Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30067
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively
Author(s): Jones, Isabel L
DeWalt, Saara J
Lopez, Omar R
Bunnefeld, Lynsey
Pattison, Zarah
Dent, Daisy H
Contact Email: i.l.jones@stir.ac.uk
Keywords: Aboveground biomass
Belowground biomass
Carbon storage
Forest restoration
Land-use change
Necromass
Neotropics
Soil
Succession
Issue Date: 20-Dec-2019
Citation: Jones IL, DeWalt SJ, Lopez OR, Bunnefeld L, Pattison Z & Dent DH (2019) Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of The Total Environment, 697, Art. No.: 133987. https://doi.org/10.1016/j.scitotenv.2019.133987
Abstract: Reducing atmospheric CO2 is an international priority. One way to assist stabilising and reducing CO2 is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear. Current global estimates for CO2 uptake and sequestration in secondary tropical forests focus on aboveground biomass and are parameterised using relatively coarse metrics of soil fertility. Here, we estimate total carbon stocks across a chronosequence of regenerating secondary forest stands (40–120 years old) in Panama, and assess the relationships between both above- and belowground carbon stocks with stand age and specific soil nutrients. We estimated carbon stocks in aboveground biomass, necromass, root biomass, and soil. We found that the two largest carbon pools - aboveground biomass and soil – have distinct relationships with stand age and soil fertility. Aboveground biomass contained ~61-97 Mg C ha-1 (24-39 % total carbon stocks) and significantly increased with stand age, but showed no relationship with soil nutrients. Soil carbon stocks contained ~128-206 Mg C ha-1 (52-70 % total stocks) and were unrelated to stand age, but were positively related to soil nitrogen. Root biomass carbon stocks tracked patterns exhibited by aboveground biomass. Necromass carbon stocks did not increase with stand age, but stocks were held in larger pieces of deadwood in older stands. Comparing our estimates to published data from younger and older secondary forests in the surrounding landscape, we show that soil carbon recovers within 40 years of forest regeneration, but aboveground biomass carbon stocks continue to increase past 100 years. Above- and belowground carbon stocks appear to be decoupled in secondary tropical forests. Paired measures of above- and belowground carbon stocks are necessary to reduce uncertainty in large-scale models of atmospheric CO2 uptake and storage by secondary forests.
DOI Link: 10.1016/j.scitotenv.2019.133987
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Jones IL, DeWalt SJ, Lopez OR, Bunnefeld L, Pattison Z & Dent DH (2019) Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of The Total Environment, 697, Art. No.: 133987. DOI: https://doi.org/10.1016/j.scitotenv.2019.133987 © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Jones_etal_2019_STOTEN.pdfFulltext - Accepted Version1.42 MBAdobe PDFUnder Embargo until 2020-08-20    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.