Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30059
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Spatiotemporal Patterns and Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using Satellite Observations
Author(s): Merrick, Trina
Pau, Stephanie
Jorge, Maria Luisa S P
Silva, Thiago S
Bennartz, Ralf
Contact Email: c.m.allan@stir.ac.uk
Keywords: satellite remote sensing
tropical vegetation function
seasonality
tropical forest
time-series analysis
vapor pressure deficit
canopy temperature
tropical savanna
tropical grasslands
Issue Date: 24-Jul-2019
Date Deposited: 10-Sep-2019
Citation: Merrick T, Pau S, Jorge MLSP, Silva TS & Bennartz R (2019) Spatiotemporal Patterns and Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using Satellite Observations. Remote Sensing, 11 (15), Art. No.: 1746. https://doi.org/10.3390/rs11151746
Abstract: Solar-induced fluorescence (SIF) has been empirically linked to gross primary productivity (GPP) in multiple ecosystems and is thus a promising tool to address the current uncertainties in carbon fluxes at ecosystem to continental scales. However, studies utilizing satellite-measured SIF in South America have concentrated on the Amazonian tropical forest, while SIF in other regions and vegetation classes remain uninvestigated. We examined three years of Orbiting Carbon Observatory-2 (OCO-2) SIF data for vegetation classes within and across the six Brazilian biomes (Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal) to answer the following: (1) how does satellite-measured SIF differ? (2) What is the relationship (strength and direction) of satellite-measured SIF with canopy temperature (T can), air temperature (T air), and vapor pressure deficit (VPD)? (3) How does the phenology of satellite-measured SIF (duration and amplitude of seasonal integrated SIF) compare? Our analysis shows that OCO-2 captures a significantly higher mean SIF with lower variability in the Amazon and lower mean SIF with higher variability in the Caatinga compared to other biomes. OCO-2 also distinguishes the mean SIF of vegetation types within biomes, showing that evergreen broadleaf (EBF) mean SIF is significantly higher than other vegetation classes (deciduous broadleaf (DBF), grassland (GRA), savannas (SAV), and woody savannas (WSAV)) in all biomes. We show that the strengths and directions of correlations of OCO-2 mean SIF to T can , T air , and VPD largely cluster by biome: negative in the Caatinga and Cerrado, positive in the Pampa, and no correlations were found in the Pantanal, while results were mixed for the Amazon and Atlantic Forest. We found mean SIF most strongly correlated with VPD in most vegetation classes in most biomes, followed by T can. Seasonality from time series analysis reveals that OCO-2 SIF measurements capture important differences in the seasonal timing of SIF for different classes, details masked when only examining mean SIF differences. We found that OCO-2 captured the highest base integrated SIF and lowest seasonal pulse integrated SIF in the Amazon for all vegetation classes, indicating continuous photosynthetic activity in the Amazon exceeds other biomes, but with small seasonal increases. Surprisingly, Pantanal EBF SIF had the highest total integrated SIF of all classes in all biomes due to a large seasonal pulse. Additionally, the length of seasons only accounts for about 30% of variability in total integrated SIF; thus, integrated SIF is likely captures differences in photosynthetic activity separate from structural differences. Our results show that satellite measurements of SIF can distinguish important functioning and phenological differences in vegetation classes and thus has the potential to improve our understanding of productivity and seasonality in the tropics.
DOI Link: 10.3390/rs11151746
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Merrick-Etal-Remote-Sensing-2019-Spatiotemporal-Patterns-and-Phenology-of-Tropical-Vegetation.pdfFulltext - Published Version2.8 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.