Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2984
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.contributor.authorHinow, Peteren_UK
dc.date.accessioned2013-06-08T19:21:20Z-
dc.date.available2013-06-08T19:21:20Zen_UK
dc.date.issued2010en_UK
dc.identifier.urihttp://hdl.handle.net/1893/2984-
dc.description.abstractIn this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an "active" phase when individuals grow, reproduce and die and a second "resting" phase when individuals only grow. Transition between these two phases depends on individuals' size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationFarkas JZ & Hinow P (2010) On a size-structured two-phase population model with infinite states-at-birth. Positivity, 14 (3), pp. 501-514. https://doi.org/10.1007/s11117-009-0033-4en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectSize-structured populationsen_UK
dc.subjectpositivityen_UK
dc.subjectquasicontractive semigroupsen_UK
dc.subjectspectral methodsen_UK
dc.subjectasynchronous exponential growthen_UK
dc.subjectPopulation dynamicsen_UK
dc.subjectAnimal populations Mathematical modelsen_UK
dc.titleOn a size-structured two-phase population model with infinite states-at-birthen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[On a size-structured two-phase population model.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s11117-009-0033-4en_UK
dc.citation.jtitlePositivityen_UK
dc.citation.issn1572-9281en_UK
dc.citation.issn1385-1292en_UK
dc.citation.volume14en_UK
dc.citation.issue3en_UK
dc.citation.spage501en_UK
dc.citation.epage514en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailjzf@maths.stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationUniversity of Wisconsin-Madisonen_UK
dc.identifier.isiWOS:000281384500011en_UK
dc.identifier.scopusid2-s2.0-77956181916en_UK
dc.identifier.wtid829284en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dc.date.accepted1990-01-01en_UK
dcterms.dateAccepted1990-01-01en_UK
dc.date.filedepositdate2011-05-03en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.authorHinow, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameOn a size-structured two-phase population model.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1385-1292en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
On a size-structured two-phase population model.pdfFulltext - Published Version184.61 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.