Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTaha, Tayseer M Fen_UK
dc.contributor.authorWajid, Summrina Kanwalen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2019-07-05T00:00:08Z-
dc.date.available2019-07-05T00:00:08Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29829-
dc.description.abstractSpeech enhancement is used in almost all modern communication systems. This is due to the quality of speech being degraded by environmental interference factors, such as: Acoustic additive noise, acoustic reverberation or white Gaussian noise. This paper, explores the potential of different benchmark optimization techniques for enhancing the speech signal. This is accomplished by fine tuning filter coefficients using a diverse set of adaptive filters for noise suppression in speech signals. We consider the Particle Swarm Optimization (PSO) and its variants in conjunction with the Adaptive Noise Cancellation (ANC) approach, for delivering dual speech enhancement. Comparative simulation results demonstrate the potential of an optimized coefficient ANC over a fixed one. Experiments are performed at different signal to noise ratios (SNRs), using two benchmark datasets: the NOIZEUS and Arabic dataset. The performance of the proposed algorithms is evaluated by maximising the perceptual evaluation of speech quality (PESQ) and comparing to the audio-only Wiener Filter (AW) and the Adaptive PSO for dual channel (APSOforDual) algorithms.en_UK
dc.language.isoenen_UK
dc.publisherScience Publicationsen_UK
dc.relationTaha TMF, Wajid SK & Hussain A (2019) Speech enhancement based on adaptive noise cancellation and Particle Swarm Optimization. Journal of Computer Science, 15 (5), pp. 691-701. https://doi.org/10.3844/jcssp.2019.691.701en_UK
dc.rights© 2019 Tayseer M.F. Taha, Summrina Kanwal Wajid and Amir Hussain. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectSpeech Enhancementen_UK
dc.subjectAdaptive Noise Cancellationen_UK
dc.subjectAdaptive Filtersen_UK
dc.subjectMeta-Heuristic Algorithmsen_UK
dc.subjectParticle Swarm Optimizationen_UK
dc.titleSpeech enhancement based on adaptive noise cancellation and Particle Swarm Optimizationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3844/jcssp.2019.691.701en_UK
dc.citation.jtitleJournal of Computer Scienceen_UK
dc.citation.issn1549-3636en_UK
dc.citation.volume15en_UK
dc.citation.issue5en_UK
dc.citation.spage691en_UK
dc.citation.epage701en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationSudan University for Sciences and Technologyen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.identifier.scopusid2-s2.0-85067294771en_UK
dc.identifier.wtid1406804en_UK
dc.date.accepted2019-05-15en_UK
dcterms.dateAccepted2019-05-15en_UK
dc.date.filedepositdate2019-07-04en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorTaha, Tayseer M F|en_UK
local.rioxx.authorWajid, Summrina Kanwal|en_UK
local.rioxx.authorHussain, Amir|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-07-04en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2019-07-04|en_UK
local.rioxx.filenamejcssp.2019.691.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1552-6607en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
jcssp.2019.691.pdfFulltext - Published Version382.25 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.