Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Abder-Rahmanen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorTrappenberg, Thomasen_UK
dc.contributor.editorMeurs, M-Jen_UK
dc.contributor.editorRudzicz, Fen_UK
dc.date.accessioned2019-06-20T00:05:31Z-
dc.date.available2019-06-20T00:05:31Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29692-
dc.description.abstractImage segmentation is considered a crucial step in automatic dermoscopic image analysis as it affects the accuracy of subsequent steps. The huge progress in deep learning has recently revolutionized the image recognition and computer vision domains. In this paper, we compare a supervised deep learning based approach with an unsupervised deep learning based approach for the task of skin lesion segmentation in dermoscopy images. Results show that, by using the default parameter settings and network configurations proposed in the original approaches, although the unsupervised approach could detect fine structures of skin lesions in some occasions, the supervised approach shows much higher accuracy in terms of Dice coefficient and Jaccard index compared to the unsupervised approach, resulting in 77.7% vs. 40% and 67.2% vs. 30.4%, respectively. With a proposed modification to the unsupervised approach, the Dice and Jaccard values improved to 54.3% and 44%, respectively.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationAli A, Li J & Trappenberg T (2019) Supervised Versus Unsupervised Deep Learning Based Methods for Skin Lesion Segmentation in Dermoscopy Images. In: Meurs M & Rudzicz F (eds.) Advances in Artificial Intelligence. Lecture Notes in Computer Science, 11489. Canadian AI 2019: 32nd Canadian Conference on Artificial Intelligence, Kingston, ON, Canada, 28.05.2019-31.05.2019. Cham, Switzerland: Springer, pp. 373-379. https://doi.org/10.1007/978-3-030-18305-9_32en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11489en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a chapter published in Meurs M & Rudzicz F (eds.) Advances in Artificial Intelligence. Lecture Notes in Computer Science, 11489. Canadian AI 2019: 32nd Canadian Conference on Artificial Intelligence, Kingston, ON, Canada, 28.05.2019-31.05.2019. Cham, Switzerland: Springer, pp. 373-379. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-18305-9_32en_UK
dc.subjectDeep learningen_UK
dc.subjectDermoscopyen_UK
dc.subjectMelanomaen_UK
dc.titleSupervised Versus Unsupervised Deep Learning Based Methods for Skin Lesion Segmentation in Dermoscopy Imagesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-18305-9_32en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage373en_UK
dc.citation.epage379en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleAdvances in Artificial Intelligenceen_UK
dc.citation.conferencedates2019-05-28 - 2019-05-31en_UK
dc.citation.conferencelocationKingston, ON, Canadaen_UK
dc.citation.conferencenameCanadian AI 2019: 32nd Canadian Conference on Artificial Intelligenceen_UK
dc.citation.date24/04/2019en_UK
dc.citation.isbn978-3030183042en_UK
dc.citation.isbn978-3-030-18305-9en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationDalhousie Universityen_UK
dc.identifier.wtid1392118en_UK
dc.contributor.orcid0000-0002-5450-5472en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2019-02-27en_UK
dcterms.dateAccepted2019-02-27en_UK
dc.date.filedepositdate2019-06-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAli, Abder-Rahman|0000-0002-5450-5472en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorTrappenberg, Thomas|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMeurs, M-J|en_UK
local.rioxx.contributorRudzicz, F|en_UK
local.rioxx.freetoreaddate2019-06-19en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-06-19|en_UK
local.rioxx.filenameCanadianAI19_submitted.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-18305-9en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
CanadianAI19_submitted.pdfFulltext - Accepted Version3.51 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.