Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZyphur, Michaelen_UK
dc.contributor.authorVoelkle, Manuelen_UK
dc.contributor.authorTay, Louisen_UK
dc.contributor.authorAllison, Paulen_UK
dc.contributor.authorPreacher, Kristopheren_UK
dc.contributor.authorZhang, Zhenen_UK
dc.contributor.authorHamaker, Ellenen_UK
dc.contributor.authorShamsollahi, Alien_UK
dc.contributor.authorPierides, Deanen_UK
dc.contributor.authorKoval, Peteren_UK
dc.contributor.authorDiener, Eden_UK
dc.date.accessioned2019-06-13T09:36:40Z-
dc.date.available2019-06-13T09:36:40Z-
dc.date.issued2020-10-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29676-
dc.description.abstractThis article compares a general cross-lagged model (GCLM) to other panel data methods based on their coherence with a causal logic and pragmatic concerns regarding modeled dynamics and hypothesis testing. We examine three “static” models that do not incorporate temporal dynamics: random- and fixed-effects models that estimate contemporaneous relationships; and latent curve models. We then describe “dynamic” models that incorporate temporal dynamics in the form of lagged effects: cross-lagged models estimated in a structural equation model (SEM) or multilevel model (MLM) framework; Arellano-Bond dynamic panel data methods; and autoregressive latent trajectory models. We describe the implications of overlooking temporal dynamics in static models and show how even popular cross-lagged models fail to control for stable factors over time. We also show that Arellano-Bond and autoregressive latent trajectory models have various shortcomings. By contrasting these approaches, we clarify the benefits and drawbacks of common methods for modeling panel data, including the GCLM approach we propose. We conclude with a discussion of issues regarding causal inference, including difficulties in separating different types of time-invariant and time-varying effects over time.en_UK
dc.language.isoenen_UK
dc.publisherSAGE Publicationsen_UK
dc.relationZyphur M, Voelkle M, Tay L, Allison P, Preacher K, Zhang Z, Hamaker E, Shamsollahi A, Pierides D, Koval P & Diener E (2020) From Data to Causes II: Comparing Approaches to Panel Data Analysis. Organizational Research Methods, 23 (4), pp. 688-716. https://doi.org/10.1177/1094428119847280en_UK
dc.rightsZyphur M, Voelkle M, Tay L, Allison P, Preacher K, Zhang Z, Hamaker E, Shamsollahi A, Pierides D, Koval P & Diener E (2019) From Data to Causes II: Comparing Approaches to Panel Data Analysis. Organizational Research Methods, 23 (4), pp. 688-716. https://doi.org/10.1177/1094428119847280 Copyright © The Author(s) 2019. Reprinted by permission of SAGE Publications.en_UK
dc.subjectpanel data modelen_UK
dc.subjectcausal inferenceen_UK
dc.subjectcross-lagged modelen_UK
dc.subjectGranger causalityen_UK
dc.subjectstructural equation modelen_UK
dc.subjectmultilevel modelen_UK
dc.subjectlatent curve modelen_UK
dc.subjectlatent growth modelen_UK
dc.subjectArellano-Bond methodsen_UK
dc.titleFrom Data to Causes II: Comparing Approaches to Panel Data Analysisen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1177/1094428119847280en_UK
dc.citation.jtitleOrganizational Research Methodsen_UK
dc.citation.issn1552-7425en_UK
dc.citation.issn1094-4281en_UK
dc.citation.volume23en_UK
dc.citation.issue4en_UK
dc.citation.spage688en_UK
dc.citation.epage716en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderAustralian Research Councilen_UK
dc.author.emaild.c.pierides@stir.ac.uken_UK
dc.citation.date24/05/2019en_UK
dc.contributor.affiliationUniversity of Melbourneen_UK
dc.contributor.affiliationHumboldt University Berlinen_UK
dc.contributor.affiliationPurdue Universityen_UK
dc.contributor.affiliationUniversity of Pennsylvaniaen_UK
dc.contributor.affiliationVanderbilt Universityen_UK
dc.contributor.affiliationArizona State Universityen_UK
dc.contributor.affiliationUtrecht Universityen_UK
dc.contributor.affiliationESSEC Business Schoolen_UK
dc.contributor.affiliationManagement, Work and Organisationen_UK
dc.contributor.affiliationUniversity of Melbourneen_UK
dc.contributor.affiliationUniversity of Virginiaen_UK
dc.identifier.isiWOS:000557533600004en_UK
dc.identifier.scopusid2-s2.0-85087847584en_UK
dc.identifier.wtid1378799en_UK
dc.contributor.orcid0000-0003-0876-9909en_UK
dc.date.accepted2019-05-24en_UK
dcterms.dateAccepted2019-05-24en_UK
dc.date.filedepositdate2019-06-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZyphur, Michael|en_UK
local.rioxx.authorVoelkle, Manuel|en_UK
local.rioxx.authorTay, Louis|en_UK
local.rioxx.authorAllison, Paul|en_UK
local.rioxx.authorPreacher, Kristopher|en_UK
local.rioxx.authorZhang, Zhen|en_UK
local.rioxx.authorHamaker, Ellen|en_UK
local.rioxx.authorShamsollahi, Ali|en_UK
local.rioxx.authorPierides, Dean|0000-0003-0876-9909en_UK
local.rioxx.authorKoval, Peter|en_UK
local.rioxx.authorDiener, Ed|en_UK
local.rioxx.projectProject ID unknown|Australian Research Council|http://dx.doi.org/10.13039/501100000923en_UK
local.rioxx.freetoreaddate2019-06-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-06-13|en_UK
local.rioxx.filenameZyphur et al. - From data to causes II. ORM (Accepted).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1552-7425en_UK
Appears in Collections:Management, Work and Organisation Journal Articles

Files in This Item:
File Description SizeFormat 
Zyphur et al. - From data to causes II. ORM (Accepted).pdfFulltext - Accepted Version1.9 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.