Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29675
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZyphur, Michael Jen_UK
dc.contributor.authorAllison, Paul Den_UK
dc.contributor.authorTay, Louisen_UK
dc.contributor.authorVoelkle, Manuel Cen_UK
dc.contributor.authorPreacher, Kristopher Jen_UK
dc.contributor.authorZhang, Zhenen_UK
dc.contributor.authorHamaker, Ellen Len_UK
dc.contributor.authorShamsollahi, Alien_UK
dc.contributor.authorPierides, Dean Cen_UK
dc.contributor.authorKoval, Peteren_UK
dc.contributor.authorDiener, Eden_UK
dc.date.accessioned2019-06-13T09:27:06Z-
dc.date.available2019-06-13T09:27:06Z-
dc.date.issued2020-10-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29675-
dc.description.abstractThis is the first paper in a series of two that synthesizes, compares, and extends methods for causal inference with longitudinal panel data in a structural equation modeling (SEM) framework. Starting with a cross-lagged approach, this paper builds a general cross-lagged panel model (GCLM) with parameters to account for stable factors while increasing the range of dynamic processes that can be modeled. We illustrate the GCLM by examining the relationship between national income and subjective well-being (SWB), showing how to examine hypotheses about short-run (via Granger-Sims tests) versus long-run effects (via impulse responses). When controlling for stable factors, we find no short-run or long-run effects among these variables, showing national SWB to be relatively stable, whereas income is less so. Our second paper addresses the differences between the GCLM and other methods. Online Supplementary Materials offer an Excel file automating GCLM input for Mplus (with an example also for Lavaan in R) and analyses using additional data sets and all program input/output. We also offer an introductory GCLM presentation at https://youtu.be/tHnnaRNPbXs. We conclude with a discussion of issues surrounding causal inference.en_UK
dc.language.isoenen_UK
dc.publisherSAGE Publicationsen_UK
dc.relationZyphur MJ, Allison PD, Tay L, Voelkle MC, Preacher KJ, Zhang Z, Hamaker EL, Shamsollahi A, Pierides DC, Koval P & Diener E (2020) From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM). Organizational Research Methods, 23 (4), pp. 651-687. https://doi.org/10.1177/1094428119847278en_UK
dc.rightsZyphur MJ, Allison PD, Tay L, Voelkle MC, Preacher KJ, Zhang Z, Hamaker EL, Shamsollahi A, Pierides DC, Koval P & Diener E (2019) From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM). Organizational Research Methods, 23 (4), pp. 651-687. https://doi.org/10.1177/1094428119847278 Copyright © The Author(s) 2019. Reprinted by permission of SAGE Publications.en_UK
dc.subjectpanel data modelen_UK
dc.subjectcross-lagged panel modelen_UK
dc.subjectcausal inferenceen_UK
dc.subjectGranger causalityen_UK
dc.subjectstructural equation modelen_UK
dc.subjectvector autoregressive VAR modelen_UK
dc.subjectautoregressionen_UK
dc.subjectmoving averageen_UK
dc.subjectARMAen_UK
dc.subjectVARMAen_UK
dc.subjectpanel VARen_UK
dc.titleFrom Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM)en_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1177/1094428119847278en_UK
dc.citation.jtitleOrganizational Research Methodsen_UK
dc.citation.issn1552-7425en_UK
dc.citation.issn1094-4281en_UK
dc.citation.volume23en_UK
dc.citation.issue4en_UK
dc.citation.spage651en_UK
dc.citation.epage687en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderAustralian Research Councilen_UK
dc.author.emaild.c.pierides@stir.ac.uken_UK
dc.citation.date21/05/2019en_UK
dc.contributor.affiliationUniversity of Melbourneen_UK
dc.contributor.affiliationUniversity of Pennsylvaniaen_UK
dc.contributor.affiliationPurdue Universityen_UK
dc.contributor.affiliationHumboldt University Berlinen_UK
dc.contributor.affiliationVanderbilt Universityen_UK
dc.contributor.affiliationArizona State Universityen_UK
dc.contributor.affiliationUtrecht Universityen_UK
dc.contributor.affiliationESSEC Business Schoolen_UK
dc.contributor.affiliationManagement, Work and Organisationen_UK
dc.contributor.affiliationUniversity of Melbourneen_UK
dc.contributor.affiliationUniversity of Virginiaen_UK
dc.identifier.isiWOS:000557533600003en_UK
dc.identifier.scopusid2-s2.0-85068726560en_UK
dc.identifier.wtid1378749en_UK
dc.contributor.orcid0000-0003-0876-9909en_UK
dc.date.accepted2019-03-22en_UK
dcterms.dateAccepted2019-03-22en_UK
dc.date.filedepositdate2019-06-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZyphur, Michael J|en_UK
local.rioxx.authorAllison, Paul D|en_UK
local.rioxx.authorTay, Louis|en_UK
local.rioxx.authorVoelkle, Manuel C|en_UK
local.rioxx.authorPreacher, Kristopher J|en_UK
local.rioxx.authorZhang, Zhen|en_UK
local.rioxx.authorHamaker, Ellen L|en_UK
local.rioxx.authorShamsollahi, Ali|en_UK
local.rioxx.authorPierides, Dean C|0000-0003-0876-9909en_UK
local.rioxx.authorKoval, Peter|en_UK
local.rioxx.authorDiener, Ed|en_UK
local.rioxx.projectProject ID unknown|Australian Research Council|http://dx.doi.org/10.13039/501100000923en_UK
local.rioxx.freetoreaddate2019-06-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-06-13|en_UK
local.rioxx.filenameZyphur et al. - From data to causes I. ORM (Accepted).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1552-7425en_UK
Appears in Collections:Management, Work and Organisation Journal Articles

Files in This Item:
File Description SizeFormat 
Zyphur et al. - From data to causes I. ORM (Accepted).pdfFulltext - Accepted Version2.42 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.