Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29641
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.date.accessioned2019-05-31T00:02:17Z-
dc.date.available2019-05-31T00:02:17Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29641-
dc.description.abstractWhen searching for input configurations that optimise the output of a system, it can be useful to build a statistical model of the system being optimised. This is done in approaches such as surrogate model-based optimisation, estimation of distribution algorithms and linkage learning algorithms. This paper presents a method for modelling pseudo-Boolean fitness functions using Walsh bases and an algorithm designed to discover the non-zero coefficients while attempting to minimise the number of fitness function evaluations required. The resulting models reveal linkage structure that can be used to guide a search of the model efficiently. It presents experimental results solving benchmark problems in fewer fitness function evaluations than those reported in the literature for other search methods such as EDAs and linkage learners.en_UK
dc.language.isoenen_UK
dc.publisherMassachusetts Institute of Technology Press (MIT Press)en_UK
dc.relationSwingler K (2020) Learning and Searching Pseudo-Boolean Surrogate Functions from Small Samples. Evolutionary Computation, 28 (2), pp. 317-338. https://doi.org/10.1162/evco_a_00257en_UK
dc.rightsAccepted for publication in Evolutionary Computation published by MIT Press. The final published version is available at: https://doi.org/10.1162/evco_a_00257en_UK
dc.subjectFitness Function Modellingen_UK
dc.subjectEstimation of Distribution Algorithmsen_UK
dc.subjectPseudo-Boolean Functionsen_UK
dc.subjectLinkage Learningen_UK
dc.subjectWalsh Decompositionen_UK
dc.subjectMixed Order Hyper Networksen_UK
dc.subjectStatistical Machine Learningen_UK
dc.titleLearning and Searching Pseudo-Boolean Surrogate Functions from Small Samplesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1162/evco_a_00257en_UK
dc.identifier.pmid31038355en_UK
dc.citation.jtitleEvolutionary Computationen_UK
dc.citation.issn1530-9304en_UK
dc.citation.issn1063-6560en_UK
dc.citation.volume28en_UK
dc.citation.issue2en_UK
dc.citation.spage317en_UK
dc.citation.epage338en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.date30/04/2019en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000539231700006en_UK
dc.identifier.scopusid2-s2.0-85085713369en_UK
dc.identifier.wtid1380373en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.date.accepted2019-04-25en_UK
dcterms.dateAccepted2019-04-25en_UK
dc.date.filedepositdate2019-05-30en_UK
dc.subject.tagOptimisationen_UK
dc.subject.tagComputational Intelligence and Machine Learningen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-05-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-05-30|en_UK
local.rioxx.filenameECJ-2018-036R2-single.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1530-9304en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
ECJ-2018-036R2-single.pdfFulltext - Accepted Version207.02 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.