Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2962
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2018-01-09T02:59:12Z-
dc.date.available2018-01-09T02:59:12Z-
dc.date.issued2011-02en_UK
dc.identifier.urihttp://hdl.handle.net/1893/2962-
dc.description.abstractWe consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by Allee-effect.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationFarkas JZ (2011) Size-structured populations: immigration, (bi)stability and the net growth rate. Journal of Applied Mathematics and Computing, 35 (40940), pp. 617-633. http://www.springerlink.com/content/1598-5865/; https://doi.org/10.1007/s12190-010-0382-yen_UK
dc.rightsPublished in Journal of Applied Mathematics and Computing by Springer.; The final publication is available at www.springerlink.comen_UK
dc.subjectStructured population dynamicsen_UK
dc.subjectPopulation inflowen_UK
dc.subjectBistabilityen_UK
dc.subjectQuasicontraction semigroupsen_UK
dc.subjectPositivityen_UK
dc.subjectSpectral methodsen_UK
dc.subjectNet growth rateen_UK
dc.subjectPopulation dynamicsen_UK
dc.titleSize-structured populations: immigration, (bi)stability and the net growth rateen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s12190-010-0382-yen_UK
dc.citation.jtitleJournal of Applied Mathematics and Computingen_UK
dc.citation.issn1865-2085en_UK
dc.citation.issn1598-5865en_UK
dc.citation.volume35en_UK
dc.citation.issue40940en_UK
dc.citation.spage617en_UK
dc.citation.epage633en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.springerlink.com/content/1598-5865/en_UK
dc.author.emailjzf@maths.stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000213152500046en_UK
dc.identifier.scopusid2-s2.0-78651350677en_UK
dc.identifier.wtid829510en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dcterms.dateAccepted2011-02-28en_UK
dc.date.filedepositdate2011-04-19en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2011-04-19en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2011-04-19|en_UK
local.rioxx.filenameSize-structured populations.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1598-5865en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Size-structured populations.pdfFulltext - Accepted Version262.64 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.