Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/29619
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mostert, Werner | en_UK |
dc.contributor.author | Malan, Katherine M | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.author | Engelbrecht, Andries P | en_UK |
dc.contributor.editor | Liefooghe, A | en_UK |
dc.contributor.editor | Paquete, L | en_UK |
dc.date.accessioned | 2019-05-29T13:30:28Z | - |
dc.date.available | 2019-05-29T13:30:28Z | - |
dc.date.issued | 2019 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/29619 | - |
dc.description.abstract | The binary feature selection problem is investigated in this paper. Feature selection fitness landscape analysis is done, which allows for a better understanding of the behaviour of feature selection algorithms. Local optima networks are employed as a tool to visualise and characterise the fitness landscapes of the feature selection problem in the context of classification. An analysis of the fitness landscape global structure is provided, based on seven real-world datasets with up to 17 features. Formation of neutral global optima plateaus are shown to indicate the existence of irrelevant features in the datasets. Removal of irrelevant features resulted in a reduction of neutrality and the ratio of local optima to the size of the search space, resulting in improved performance of genetic algorithm search in finding the global optimum. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer Verlag | en_UK |
dc.relation | Mostert W, Malan KM, Ochoa G & Engelbrecht AP (2019) Insights into the feature selection problem using local optima networks. In: Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer Verlag, pp. 147-162. https://doi.org/10.1007/978-3-030-16711-0_10 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 11452 | en_UK |
dc.rights | This is a post-peer-review, pre-copyedit version of an article published in Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer Verlag, pp. 147-162. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-16711-0_10 | en_UK |
dc.subject | Local optima networks | en_UK |
dc.subject | Feature selection | en_UK |
dc.subject | Fitness landscape analysis | en_UK |
dc.title | Insights into the feature selection problem using local optima networks | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1007/978-3-030-16711-0_10 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 147 | en_UK |
dc.citation.epage | 162 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.author.email | gabriela.ochoa@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Evolutionary Computation in Combinatorial Optimization | en_UK |
dc.citation.conferencedates | 2019-04-24 - 2019-04-26 | en_UK |
dc.citation.conferencelocation | Leipzig, Germany | en_UK |
dc.citation.conferencename | 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019 | en_UK |
dc.citation.date | 28/03/2019 | en_UK |
dc.citation.isbn | 978-3-030-16710-3 | en_UK |
dc.citation.isbn | 978-3-030-16711-0 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | University of Stellenbosch, South Africa | en_UK |
dc.contributor.affiliation | University of South Africa | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Stellenbosch, South Africa | en_UK |
dc.identifier.scopusid | 2-s2.0-85064894436 | en_UK |
dc.identifier.wtid | 1380279 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2019-01-14 | en_UK |
dcterms.dateAccepted | 2019-01-14 | en_UK |
dc.date.filedepositdate | 2019-05-29 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Mostert, Werner| | en_UK |
local.rioxx.author | Malan, Katherine M| | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.author | Engelbrecht, Andries P| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Liefooghe, A| | en_UK |
local.rioxx.contributor | Paquete, L| | en_UK |
local.rioxx.freetoreaddate | 2019-05-29 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2019-05-29| | en_UK |
local.rioxx.filename | FeatureSelectionLONEvoCOP2019.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-030-16711-0 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FeatureSelectionLONEvoCOP2019.pdf | Fulltext - Accepted Version | 7.12 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.