Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMostert, Werneren_UK
dc.contributor.authorMalan, Katherine Men_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorEngelbrecht, Andries Pen_UK
dc.contributor.editorLiefooghe, Aen_UK
dc.contributor.editorPaquete, Len_UK
dc.date.accessioned2019-05-29T13:30:28Z-
dc.date.available2019-05-29T13:30:28Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29619-
dc.description.abstractThe binary feature selection problem is investigated in this paper. Feature selection fitness landscape analysis is done, which allows for a better understanding of the behaviour of feature selection algorithms. Local optima networks are employed as a tool to visualise and characterise the fitness landscapes of the feature selection problem in the context of classification. An analysis of the fitness landscape global structure is provided, based on seven real-world datasets with up to 17 features. Formation of neutral global optima plateaus are shown to indicate the existence of irrelevant features in the datasets. Removal of irrelevant features resulted in a reduction of neutrality and the ratio of local optima to the size of the search space, resulting in improved performance of genetic algorithm search in finding the global optimum.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationMostert W, Malan KM, Ochoa G & Engelbrecht AP (2019) Insights into the feature selection problem using local optima networks. In: Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer Verlag, pp. 147-162. https://doi.org/10.1007/978-3-030-16711-0_10en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11452en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer Verlag, pp. 147-162. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-16711-0_10en_UK
dc.subjectLocal optima networksen_UK
dc.subjectFeature selectionen_UK
dc.subjectFitness landscape analysisen_UK
dc.titleInsights into the feature selection problem using local optima networksen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-16711-0_10en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage147en_UK
dc.citation.epage162en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailgabriela.ochoa@cs.stir.ac.uken_UK
dc.citation.btitleEvolutionary Computation in Combinatorial Optimizationen_UK
dc.citation.conferencedates2019-04-24 - 2019-04-26en_UK
dc.citation.conferencelocationLeipzig, Germanyen_UK
dc.citation.conferencename19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of EvoStar 2019en_UK
dc.citation.date28/03/2019en_UK
dc.citation.isbn978-3-030-16710-3en_UK
dc.citation.isbn978-3-030-16711-0en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationUniversity of Stellenbosch, South Africaen_UK
dc.contributor.affiliationUniversity of South Africaen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Stellenbosch, South Africaen_UK
dc.identifier.scopusid2-s2.0-85064894436en_UK
dc.identifier.wtid1380279en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2019-01-14en_UK
dcterms.dateAccepted2019-01-14en_UK
dc.date.filedepositdate2019-05-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMostert, Werner|en_UK
local.rioxx.authorMalan, Katherine M|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorEngelbrecht, Andries P|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorLiefooghe, A|en_UK
local.rioxx.contributorPaquete, L|en_UK
local.rioxx.freetoreaddate2019-05-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-05-29|en_UK
local.rioxx.filenameFeatureSelectionLONEvoCOP2019.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-16711-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
FeatureSelectionLONEvoCOP2019.pdfFulltext - Accepted Version7.12 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.