Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29615
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment
Author(s): Richardson, Jessica
Feuchtmayr, Heidrun
Miller, Claire
Hunter, Peter
Maberly, Stephen C
Carvalho, Laurence
Contact Email: p.d.hunter@stir.ac.uk
Keywords: harmful algal bloom
climate change
multiple stressors
lake
mesocosm
experiment
microcystis
Issue Date: Oct-2019
Date Deposited: 29-May-2019
Citation: Richardson J, Feuchtmayr H, Miller C, Hunter P, Maberly SC & Carvalho L (2019) Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Global Change Biology, 25 (10), pp. 3365-3380. https://doi.org/10.1111/gcb.14701
Abstract: Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs +4°C increase), high rainfall (flushing) events (no events vs seasonal events) and nutrient loading (eutrophic vs hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (1) total phytoplankton and cyanobacteria abundance would be higher in heated mesocosms; (2) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (3) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa ‐ Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to hypothesis two, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, over‐simplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.
DOI Link: 10.1111/gcb.14701
Rights: © 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Richardson_et_al-2019-Global_Change_Biology.pdfFulltext - Published Version1.52 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.