http://hdl.handle.net/1893/29574
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM |
Author(s): | Montanher, Otávio Cristiano Novo, Evlyn Márcia Leão Moraes Barbosa, Cláudio Clemente Faria Rennó, Camilo Daleles Silva, Thiago Sanna Freire |
Contact Email: | thiago.sf.silva@stir.ac.uk |
Keywords: | band ratios corresponding author d fluvial sediments geology of m mrs multiple regressions otávio cristiano montanher s institution spectral bands the amazon top of atmosphere reflectance universidade estadual de maringá |
Issue Date: | Jun-2014 |
Date Deposited: | 24-May-2019 |
Citation: | Montanher OC, Novo EMLM, Barbosa CCF, Rennó CD & Silva TSF (2014) Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. International Journal of Applied Earth Observation and Geoinformation, 29, pp. 67-77. https://doi.org/10.1016/j.jag.2014.01.001 |
Abstract: | Suspended sediment yield is a very important environmental indicator within Amazonian fluvial systems, especially for rivers dominated by inorganic particles, referred to as white water rivers. For vast portions of Amazonian rivers, suspended sediment concentration (SSC) is measured infrequently or not at all. However, remote sensing techniques have been used to estimate water quality parameters worldwide, from which data for suspended matter is the most successfully retrieved. This paper presents empirical models for SSC retrieval in Amazonian white water rivers using reflectance data derived from Landsat 5/TM. The models use multiple regression for both the entire dataset (global model, N = 504) and for five segmented datasets (regional models) defined by general geological features of drainage basins. The models use VNIR bands, band ratios, and the SWIR band 5 as input. For the global model, the adjusted R2 is 0.76, while the adjusted R2 values for regional models vary from 0.77 to 0.89, all significant (p-value < 0.0001). The regional models are subject to the leave-one-out cross validation technique, which presents robust results. The findings show that both the average error of estimation and the standard deviation increase as the SSC range increases. Regional models were more accurate when compared with the global model, suggesting changes in optical proprieties of water sampled at different sampling stations. Results confirm the potential for the estimation of SSC from Landsat/TM historical series data for the 1980s and 1990s, for which the in situ database is scarce. Such estimates supplement the SSC temporal series, providing a more comprehensive SSC temporal series which may show environmental dynamics yet unknown. |
DOI Link: | 10.1016/j.jag.2014.01.001 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Montanher et al-IJAEOG-2019.pdf | Fulltext - Published Version | 1.88 MB | Adobe PDF | Under Permanent Embargo Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.