Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29565
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.contributor.authorMenini, Nathaliaen_UK
dc.contributor.authorSilva, Thiago S Fen_UK
dc.contributor.authorMorellato, Leonor Patricia Cen_UK
dc.contributor.authorda S Torres, Ricardoen_UK
dc.date.accessioned2019-05-24T00:02:23Z-
dc.date.available2019-05-24T00:02:23Z-
dc.date.issued2019-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29565-
dc.description.abstractPlant phenology studies rely on long-term monitoring of life cycles of plants. High-resolution unmanned aerial vehicles (UAVs) and near-surface technologies have been used for plant monitoring, demanding the creation of methods capable of locating, and identifying plant species through time and space. However, this is a challenging task given the high volume of data, the constant data missing from temporal dataset, the heterogeneity of temporal profiles, the variety of plant visual patterns, and the unclear definition of individuals' boundaries in plant communities. In this letter, we propose a novel method, suitable for phenological monitoring, based on convolutional networks (ConvNets) to perform spatio-temporal vegetation pixel classification on high-resolution images. We conducted a systematic evaluation using high-resolution vegetation image datasets associated with the Brazilian Cerrado biome. Experimental results show that the proposed approach is effective, overcoming other spatio-temporal pixel-classification strategies.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationNogueira K, dos Santos JA, Menini N, Silva TSF, Morellato LPC & da S Torres R (2019) Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks. <i>IEEE Geoscience and Remote Sensing Letters</i>, 16 (10), pp. 1665-1669. https://doi.org/10.1109/lgrs.2019.2903194en_UK
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectGeotechnical Engineering and Engineering Geologyen_UK
dc.subjectElectrical and Electronic Engineeringen_UK
dc.titleSpatio-Temporal Vegetation Pixel Classification by Using Convolutional Networksen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/lgrs.2019.2903194en_UK
dc.citation.jtitleIEEE Geoscience and Remote Sensing Lettersen_UK
dc.citation.issn1558-0571en_UK
dc.citation.issn1545-598Xen_UK
dc.citation.volume16en_UK
dc.citation.issue10en_UK
dc.citation.spage1665en_UK
dc.citation.epage1669en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior Brasil Finance Code 001en_UK
dc.contributor.funderCedro Textil Reserva Vellozia Parque Nacional da Serra do Cipoen_UK
dc.contributor.funderConselho Nacional de Desenvolvimento Científico e Tecnológicoen_UK
dc.contributor.funderPro-Reitoria de Pesquisa da UFMGen_UK
dc.contributor.funderFundacao de Amparo a Pesquisa do Estado de Minas Gerais FAPEMIGen_UK
dc.contributor.funderSao Paulo Research Foundation FAPESPen_UK
dc.contributor.funderConselho Nacional de Desenvolvimento Cientifico e Tecnologico CNPq Research Fellowship to JAS LPCM RST and TSFSen_UK
dc.citation.date04/04/2019en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.identifier.isiWOS:000489756100032en_UK
dc.identifier.wtid1279159en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.contributor.orcid0000-0002-9955-8551en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.contributor.orcid0000-0001-9772-263Xen_UK
dc.date.accepted2019-02-27en_UK
dcterms.dateAccepted2019-02-27en_UK
dc.date.filedepositdate2019-05-23en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authordos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.authorMenini, Nathalia|0000-0002-9955-8551en_UK
local.rioxx.authorSilva, Thiago S F|0000-0001-8174-0489en_UK
local.rioxx.authorMorellato, Leonor Patricia C|en_UK
local.rioxx.authorda S Torres, Ricardo|0000-0001-9772-263Xen_UK
local.rioxx.project88881.145912/2017-01|Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior Brasil Finance Code 001|en_UK
local.rioxx.projectPELD-CRSC-17|Cedro Textil Reserva Vellozia Parque Nacional da Serra do Cipo|en_UK
local.rioxx.project424700/2018-2|Conselho Nacional de Desenvolvimento Científico e Tecnológico|en_UK
local.rioxx.projectProject ID unknown|Pro-Reitoria de Pesquisa da UFMG|en_UK
local.rioxx.projectAPQ-00449-17|Fundacao de Amparo a Pesquisa do Estado de Minas Gerais FAPEMIG|en_UK
local.rioxx.project2013/50155-0|Sao Paulo Research Foundation FAPESP|en_UK
local.rioxx.projectProject ID unknown|Conselho Nacional de Desenvolvimento Cientifico e Tecnologico CNPq Research Fellowship to JAS LPCM RST and TSFS|en_UK
local.rioxx.freetoreaddate2019-05-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-05-23|en_UK
local.rioxx.filenameNogueira_et_al_IEEE_GSRL_2019.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0571en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Nogueira_et_al_IEEE_GSRL_2019.pdfFulltext - Accepted Version2.21 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.