Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29476
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Rainfall frequency, not quantity, controls isopod effect on litter decomposition
Author(s): Joly, François-Xavier
Weibel, Abigail K
Coulis, Mathieu
Throop, Heather L
Contact Email: francois-xavier.joly1@stir.ac.uk
Keywords: Soil Science
Microbiology
Issue Date: Aug-2019
Date Deposited: 10-May-2019
Citation: Joly F, Weibel AK, Coulis M & Throop HL (2019) Rainfall frequency, not quantity, controls isopod effect on litter decomposition. Soil Biology and Biochemistry, 135, pp. 154-162. https://doi.org/10.1016/j.soilbio.2019.05.003
Abstract: Increasing climate variability is one of the dominant components of climate change, resulting particularly in altered rainfall patterns. Yet, the consequences of rainfall variability on biogeochemical processes that contribute to greenhouse gas emissions has received far less attention than have changes in long-term mean rainfall. In particular, it remains unclear how leaf litter decomposition responds to changes in rainfall frequency compared to changes in cumulative rainfall quantity, and if changes in rainfall patterns will differentially affect organisms in the decomposer food web (e.g., microbial decomposers that break down leaf litter through saprotrophic processes versus detritivores that directly ingest leaf litter). To address this knowledge gap, we disentangled the relative importance of cumulative rainfall quantity and rainfall frequency on both microbial- and detritivore-driven litter decomposition, using the isopod Armadillidium vulgare as a model macro-detritivore species and simulating rainfall in a full-factorial microcosm experiment. We found that microbially-driven decomposition was positively related to cumulative rainfall quantity, but tended to saturate with increasing cumulative rainfall quantity when rainfall events were large and infrequent. This saturation appeared to result from two mechanisms. First, at high level of cumulative rainfall quantity, large and infrequent rainfall events induce lower litter moisture compared to smaller but more frequent ones. Second, microbial activity saturated with increasing litter moisture, suggesting that water was no longer limiting. In contrast, isopod-driven decomposition was unaffected by cumulative rainfall quantity, but was strongly controlled by the rainfall frequency, with higher isopod-driven decomposition at low rainfall frequency. We found that isopod-driven decomposition responded positively to an increase in the weekly range of soil moisture and not to mean soil or litter moisture, suggesting that an alternation of dry and moist conditions enhances detritivore activity. Collectively, our results suggest that A. vulgare morphological and behavioral characteristics may reduce its sensitivity to varying moisture conditions relative to microbial decomposers. We conclude that the activity of microorganisms and isopods are controlled by distinct aspects of rainfall patterns. Consequently, altered rainfall patterns may change the relative contribution of microbial decomposers and detritivores to litter decomposition.
DOI Link: 10.1016/j.soilbio.2019.05.003
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Joly F, Weibel AK, Coulis M & Throop HL (2019) Rainfall frequency, not quantity, controls isopod effect on litter decomposition. Soil Biology and Biochemistry, 135, pp. 154-162. DOI: https://doi.org/10.1016/j.soilbio.2019.05.003 © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
1-s2.0-S0038071719301373-main.pdfFulltext - Accepted Version859.08 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.