Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlqarafi, Abdulrahmanen_UK
dc.contributor.authorAdeel, Ahsanen_UK
dc.contributor.authorHawalah, Ahmeden_UK
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.editorHussain, Aen_UK
dc.contributor.editorZhao, Hen_UK
dc.contributor.editorRen, Jen_UK
dc.contributor.editorZheng, Jen_UK
dc.contributor.editorLiu, C-Len_UK
dc.contributor.editorLuo, Ben_UK
dc.contributor.editorZhao, Xen_UK
dc.date.accessioned2019-05-03T00:01:14Z-
dc.date.available2019-05-03T00:01:14Z-
dc.date.issued2018en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29408-
dc.description.abstractIn the literature, limited work has been conducted to develop sentiment resources for Saudi dialect. The lack of resources such as dialectical lexicons and corpora are some of the major bottlenecks to the successful development of Arabic sentiment analysis models. In this paper, a semi-supervised approach is presented to construct an annotated sentiment corpus for Saudi dialect using Twitter. The presented approach is primarily based on a list of lexicons built by using word embedding techniques such as word2vec. A huge corpus extracted from twitter is annotated and manually reviewed to exclude incorrect annotated tweets which is publicly available. For corpus validation, state-of-the-art classification algorithms (such as Logistic Regression, Support Vector Machine, and Naive Bayes) are applied and evaluated. Simulation results demonstrate that the Naive Bayes algorithm outperformed all other approaches and achieved accuracy up to 91%.en_UK
dc.language.isoenen_UK
dc.publisherSpringer International Publishingen_UK
dc.relationAlqarafi A, Adeel A, Hawalah A, Swingler K & Hussain A (2018) A Semi-supervised Corpus Annotation for Saudi Sentiment Analysis Using Twitter. In: Hussain A, Zhao H, Ren J, Zheng J, Liu C, Luo B & Zhao X (eds.) Advances in Brain Inspired Cognitive Systems. Lecture Notes in Computer Science, 10989. BICS 2018: 9th International Conference on Brain Inspired Cognitive Systems, Xi'an, China, 07.07.2018-08.07.2018. Cham, Switzerland: Springer International Publishing, pp. 589-596. https://doi.org/10.1007/978-3-030-00563-4_57en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 10989en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Hussain A, Zhao H, Ren J, Zheng J, Liu C, Luo B & Zhao X (eds.) Advances in Brain Inspired Cognitive Systems. Lecture Notes in Computer Science, 10989. BICS 2018: 9th International Conference on Brain Inspired Cognitive Systems, Xi'an, China, 07.07.2018-08.07.2018. Cham, Switzerland: Springer International Publishing, pp. 589-596. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-00563-4_57en_UK
dc.subjectSentiment analysisen_UK
dc.subjectSaudi dialecten_UK
dc.subjectWord embeddingen_UK
dc.titleA Semi-supervised Corpus Annotation for Saudi Sentiment Analysis Using Twitteren_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-00563-4_57en_UK
dc.citation.issn1611-3349en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage589en_UK
dc.citation.epage596en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleAdvances in Brain Inspired Cognitive Systemsen_UK
dc.citation.conferencedates2018-07-07 - 2018-07-08en_UK
dc.citation.conferencelocationXi'an, Chinaen_UK
dc.citation.conferencenameBICS 2018: 9th International Conference on Brain Inspired Cognitive Systemsen_UK
dc.citation.date06/10/2018en_UK
dc.citation.isbn9783030005627en_UK
dc.citation.isbn9783030005634en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationTaibah Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85055130765en_UK
dc.identifier.wtid1046609en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2018-06-10en_UK
dcterms.dateAccepted2018-06-10en_UK
dc.date.filedepositdate2019-05-02en_UK
dc.subject.tagComputational Intelligence and Machine Learningen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAlqarafi, Abdulrahman|en_UK
local.rioxx.authorAdeel, Ahsan|en_UK
local.rioxx.authorHawalah, Ahmed|en_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorHussain, A|en_UK
local.rioxx.contributorZhao, H|en_UK
local.rioxx.contributorRen, J|en_UK
local.rioxx.contributorZheng, J|en_UK
local.rioxx.contributorLiu, C-L|en_UK
local.rioxx.contributorLuo, B|en_UK
local.rioxx.contributorZhao, X|en_UK
local.rioxx.freetoreaddate2019-05-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-05-02|en_UK
local.rioxx.filenameCamera Ready Paper-Bics Abdulrahman Alqarafi.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783030005634en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Camera Ready Paper-Bics Abdulrahman Alqarafi.pdfFulltext - Accepted Version348.47 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.