Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/29359
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | McMenemy, Paul | en_UK |
dc.contributor.author | Veerapen, Nadarajen | en_UK |
dc.contributor.author | Adair, Jason | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.editor | Liefooghe, A | en_UK |
dc.contributor.editor | Paquete, L | en_UK |
dc.date.accessioned | 2019-04-19T00:04:44Z | - |
dc.date.available | 2019-04-19T00:04:44Z | - |
dc.date.issued | 2019 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/29359 | - |
dc.description.abstract | Understanding why some problems are better solved by one algorithm rather than another is still an open problem, and the symmetric Travelling Salesperson Problem (TSP) is no exception. We apply three state-of-the-art heuristic solvers to a large set of TSP instances of varying structure and size, identifying which heuristics solve specific instances to optimality faster than others. The first two solvers considered are variants of the multi-trial Helsgaun's Lin-Kernighan Heuristic (a form of iterated local search), with each utilising a different form of Partition Crossover; the third solver is a genetic algorithm (GA) using Edge Assembly Crossover. Our results show that the GA with Edge Assembly Crossover is the best solver, shown to significantly outperform the other algorithms in 73% of the instances analysed. A comprehensive set of features for all instances is also extracted, and decision trees are used to identify main features which could best inform algorithm selection. The most prominent features identified a high proportion of instances where the GA with Edge Assembly Crossover performed significantly better when solving to optimality. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer International Publishing | en_UK |
dc.relation | McMenemy P, Veerapen N, Adair J & Ochoa G (2019) Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers. In: Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. EVOCOP 2019: European Conference on Evolutionary Computation in Combinatorial Optimization, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer International Publishing, pp. 99-114. https://doi.org/10.1007/978-3-030-16711-0_7 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 11452 | en_UK |
dc.relation.uri | http://hdl.handle.net/11667/127 | en_UK |
dc.rights | This is a post-peer-review, pre-copyedit version of a paper published in Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. EVOCOP 2019: European Conference on Evolutionary Computation in Combinatorial Optimization, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer International Publishing, pp. 99-114. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-16711-0_7 | en_UK |
dc.subject | TSP | en_UK |
dc.subject | Algorithm selection | en_UK |
dc.subject | EAX | en_UK |
dc.subject | GPX | en_UK |
dc.subject | Performance analysis | en_UK |
dc.title | Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1007/978-3-030-16711-0_7 | en_UK |
dc.citation.jtitle | Lecture Notes in Computer Science; Theory and Applications of Models of Computation | en_UK |
dc.citation.issn | 1611-3349 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 99 | en_UK |
dc.citation.epage | 114 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | The Leverhulme Trust | en_UK |
dc.contributor.funder | EPSRC Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | paul.mcmenemy@stir.ac.uk | en_UK |
dc.citation.btitle | Evolutionary Computation in Combinatorial Optimization | en_UK |
dc.citation.conferencedates | 2019-04-24 - 2019-04-26 | en_UK |
dc.citation.conferencelocation | Leipzig, Germany | en_UK |
dc.citation.conferencename | EVOCOP 2019: European Conference on Evolutionary Computation in Combinatorial Optimization | en_UK |
dc.citation.date | 28/03/2019 | en_UK |
dc.citation.isbn | 978-3-030-16710-3 | en_UK |
dc.citation.isbn | 978-3-030-16711-0 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Lille University of Science & Technology (University of Lille 1) | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.scopusid | 2-s2.0-85064904823 | en_UK |
dc.identifier.wtid | 1271273 | en_UK |
dc.contributor.orcid | 0000-0002-5280-425X | en_UK |
dc.contributor.orcid | 0000-0003-3699-1080 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2019-02-08 | en_UK |
dcterms.dateAccepted | 2019-02-08 | en_UK |
dc.date.filedepositdate | 2019-04-18 | en_UK |
dc.relation.funderproject | DAASE: Dynamic Adaptive Automated Software Engineering | en_UK |
dc.relation.funderproject | The Cartography of Computational Search Spaces | en_UK |
dc.relation.funderref | EP/J017515/1 | en_UK |
dc.relation.funderref | RPG-2015-395 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | McMenemy, Paul|0000-0002-5280-425X | en_UK |
local.rioxx.author | Veerapen, Nadarajen|0000-0003-3699-1080 | en_UK |
local.rioxx.author | Adair, Jason| | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.project | EP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.project | RPG-2015-395|The Leverhulme Trust| | en_UK |
local.rioxx.contributor | Liefooghe, A| | en_UK |
local.rioxx.contributor | Paquete, L| | en_UK |
local.rioxx.freetoreaddate | 2019-04-18 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2019-04-18| | en_UK |
local.rioxx.filename | McMenemy.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-030-16711-0 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
McMenemy.pdf | Fulltext - Accepted Version | 3.73 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.