Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexander E Ien_UK
dc.contributor.authorPetke, Justynaen_UK
dc.contributor.authorAlexander, Braden_UK
dc.contributor.authorBarr, Earl Ten_UK
dc.contributor.authorWagner, Markusen_UK
dc.contributor.authorWhite, David R.en_UK
dc.date.accessioned2019-04-19T00:02:23Z-
dc.date.available2019-04-19T00:02:23Z-
dc.date.issued2019-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29352-
dc.description.abstractGenetic improvement (GI) is a young field of research on the cusp of transforming software development. GI uses search to improve existing software. Researchers have already shown that GI can improve human-written code, ranging from program repair to optimising run-time, from reducing energy-consumption to the transplantation of new functionality. Much remains to be done. The cost of re-implementing GI to investigate new approaches is hindering progress. Therefore, we present Gin, an extensible and modifiable toolbox for GI experimentation, with a novel combination of features. Instantiated in Java and targeting the Java ecosystem, Gin automatically transforms, builds, and tests Java projects. Out of the box, Gin supports automated test-generation and source code profiling. We show, through examples and a case study, how Gin facilitates experimentation and will speed innovation in GI.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationBrownlee AEI, Petke J, Alexander B, Barr ET, Wagner M & White DR (2019) Gin: Genetic Improvement Research Made Easy. In: GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019: The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13.07.2019-17.07.2019. New York: ACM, pp. 985-993. https://doi.org/10.1145/3321707.3321841en_UK
dc.rights© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019: The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13.07.2019-17.07.2019. New York: ACM, pp. 985-993. http://doi.acm.org/10.1145/3321707.3321841en_UK
dc.subjectGenetic Improvementen_UK
dc.subjectGIen_UK
dc.subjectSearch-based Software Engineeringen_UK
dc.subjectSBSEen_UK
dc.titleGin: Genetic Improvement Research Made Easyen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2019-07-13en_UK
dc.identifier.doi10.1145/3321707.3321841en_UK
dc.citation.spage985en_UK
dc.citation.epage993en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.btitleGECCO '19: Proceedings of the Genetic and Evolutionary Computation Conferenceen_UK
dc.citation.conferencedates2019-07-13 - 2019-07-17en_UK
dc.citation.conferencelocationPrague, Czech Republicen_UK
dc.citation.conferencenameGECCO 2019: The Genetic and Evolutionary Computation Conferenceen_UK
dc.citation.date13/07/2019en_UK
dc.citation.isbn978-1-4503-6111-8en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationUniversity of Adelaideen_UK
dc.contributor.affiliationUniversity College Londonen_UK
dc.contributor.affiliationUniversity of Adelaideen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.identifier.wtid1272114en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2019-03-21en_UK
dcterms.dateAccepted2019-03-21en_UK
dc.date.filedepositdate2019-04-18en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBrownlee, Alexander E I|0000-0003-2892-5059en_UK
local.rioxx.authorPetke, Justyna|en_UK
local.rioxx.authorAlexander, Brad|en_UK
local.rioxx.authorBarr, Earl T|en_UK
local.rioxx.authorWagner, Markus|en_UK
local.rioxx.authorWhite, David R.|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-07-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2019-07-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-07-13|en_UK
local.rioxx.filenameGin__Genetic_Improvement_Research_Made_Easy_for_repo.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-6111-8en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Gin__Genetic_Improvement_Research_Made_Easy_for_repo.pdfFulltext - Accepted Version239.23 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.