Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29344
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalsina, Angelen_UK
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2019-04-18T00:04:30Z-
dc.date.available2019-04-18T00:04:30Z-
dc.date.issued2019-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29344-
dc.description.abstractIn this work we establish conditions which guarantee the existence of (strictly) positive steady states of a nonlinear structured population model. In our framework, the steady state formulation amounts to recasting the nonlinear problem as a family of eigenvalue problems, combined with a fixed point problem. Amongst other things, our formulation requires us to control the growth behaviour of the spectral bound of a family of linear operators along positive rays. For the specific class of model we consider here this presents a considerable challenge. We are going to show that the spectral bound of the family of operators, arising from the steady state formulation, can be controlled by perturbations in the domain of the generators (only). These new boundary perturbation results are particularly important for models exhibiting fertility controlled dynamics. As an important by-product of the application of the boundary perturbation results we employ here, we recover (using a recent theorem by H. R. Thieme) the familiar net reproduction number (or function) for models with single state at birth, which include for example the classic McKendrick (linear) and Gurtin-McCamy (non-linear) age-structured models.en_UK
dc.language.isoenen_UK
dc.publisherAmerican Institute of Mathematical Sciencesen_UK
dc.relationCalsina A & Farkas JZ (2019) Boundary perturbations and steady states of structured populations. Discrete and Continuous Dynamical Systems - Series B, 24 (12), pp. 6675-6691. https://doi.org/10.3934/dcdsb.2019162en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems - Series B following peer review. The definitive publisher-authenticated version Calsina A & Farkas JZ (2019) Boundary perturbations and steady states of structured populations. Discrete and Continuous Dynamical Systems - Series B, 24 (12), pp. 6675-6691. is available online at: https://doi.org/10.3934/dcdsb.2019162en_UK
dc.subjectspectral theory of positive operatorsen_UK
dc.subjectboundary perturbationsen_UK
dc.subjectstructured populationsen_UK
dc.titleBoundary perturbations and steady states of structured populationsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2020-08-01en_UK
dc.rights.embargoreason[Boundary-DCDS-B-Revision-3April2019.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.3934/dcdsb.2019162en_UK
dc.citation.jtitleDiscrete and Continuous Dynamical Systems - Series Ben_UK
dc.citation.issn1553-524Xen_UK
dc.citation.issn1531-3492en_UK
dc.citation.volume24en_UK
dc.citation.issue12en_UK
dc.citation.spage6675en_UK
dc.citation.epage6691en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderThe Carnegie Trusten_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.contributor.affiliationUniversitat Autonoma de Barcelonaen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000484545100018en_UK
dc.identifier.scopusid2-s2.0-85072562066en_UK
dc.identifier.wtid1270069en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dc.date.accepted2019-04-01en_UK
dcterms.dateAccepted2019-04-01en_UK
dc.date.filedepositdate2019-04-16en_UK
dc.relation.funderprojectResearch in Spain on Qualitative questions of a multi-strain SIS modelen_UK
dc.relation.funderrefTrust Reference No 31811en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCalsina, Angel|en_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectTrust Reference No 31811|The Carnegie Trust|en_UK
local.rioxx.freetoreaddate2020-08-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2020-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-08-01|en_UK
local.rioxx.filenameBoundary-DCDS-B-Revision-3April2019.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1553-524Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Boundary-DCDS-B-Revision-3April2019.pdfFulltext - Accepted Version379.33 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.