Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Almeida Furtado, Luiz Felipeen_UK
dc.contributor.authorSilva, Thiago Sanna Freireen_UK
dc.contributor.authorFernandes, Pedro José Fariasen_UK
dc.contributor.authorde Moraes Novo, Evlyn Márcia Leãoen_UK
dc.date.accessioned2019-04-05T00:01:21Z-
dc.date.available2019-04-05T00:01:21Z-
dc.date.issued2015-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29223-
dc.description.abstractGiven the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.en_UK
dc.language.isoenen_UK
dc.relationde Almeida Furtado LF, Silva TSF, Fernandes PJF & de Moraes Novo EML (2015) Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques [Classificação da cobertura da terra na planície de inundação do Lago Grande de Curuai (Amazônia, Brasil) utilizando dados multisensor e fusão de imagens]. Acta Amazonica, 45 (2), pp. 195-202. https://doi.org/10.1590/1809-4392201401439en_UK
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/deed.en)en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectwetlandsen_UK
dc.subjectremote sensingen_UK
dc.subjectsynthetic aperture radaren_UK
dc.titleLand cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniquesen_UK
dc.title.alternativeClassificação da cobertura da terra na planície de inundação do Lago Grande de Curuai (Amazônia, Brasil) utilizando dados multisensor e fusão de imagensen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1590/1809-4392201401439en_UK
dc.citation.jtitleActa Amazonicaen_UK
dc.citation.issn1809-4392en_UK
dc.citation.issn0044-5967en_UK
dc.citation.volume45en_UK
dc.citation.issue2en_UK
dc.citation.spage195en_UK
dc.citation.epage202en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.affiliationInstituto Nacional de Pesquisas Espaciais (INPE)en_UK
dc.contributor.affiliationSao Paulo State Universityen_UK
dc.contributor.affiliationFluminense Federal Universityen_UK
dc.contributor.affiliationInstituto Nacional de Pesquisas Espaciais (INPE)en_UK
dc.identifier.isiWOS:000351658300008en_UK
dc.identifier.scopusid2-s2.0-84924144165en_UK
dc.identifier.wtid1239130en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.date.accepted2014-09-17en_UK
dcterms.dateAccepted2014-09-17en_UK
dc.date.filedepositdate2019-04-01en_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorde Almeida Furtado, Luiz Felipe|en_UK
local.rioxx.authorSilva, Thiago Sanna Freire|0000-0001-8174-0489en_UK
local.rioxx.authorFernandes, Pedro José Farias|en_UK
local.rioxx.authorde Moraes Novo, Evlyn Márcia Leão|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2019-04-01en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2019-04-01|en_UK
local.rioxx.filenameFurtado-AA-2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0044-5967en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Furtado-AA-2015.pdfFulltext - Published Version4.86 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.