Please use this identifier to cite or link to this item:
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: The effect of culture on morphology, lipid and fatty acid composition, and polyunsaturated fatty acid metabolism of rainbow trout (Oncorhynchus mykiss) skin cells
Author(s): Ghioni, Cristina
Tocher, Douglas R
Sargent, John R
Contact Email:
Keywords: Rainbow trout
Oncorhynchus mykiss
Primary cell culture
Lipid composition
Fatty acid composition
Cell growth
Cell morphology
Rainbow trout
Cell culture
Issue Date: Nov-1997
Date Deposited: 14-Apr-2011
Citation: Ghioni C, Tocher DR & Sargent JR (1997) The effect of culture on morphology, lipid and fatty acid composition, and polyunsaturated fatty acid metabolism of rainbow trout (Oncorhynchus mykiss) skin cells. Fish Physiology and Biochemistry, 16 (6), pp. 499-513.;
Abstract: Rainbow trout (Oncorhynchus mykiss) skin cell cultures were obtained by trypsinisation of the tissue and grown in Leibovitz L-15 medium. Lipid class compositions, and fatty acid profiles of total lipids and individual phospholipid classes were determined at different times of culture. The metabolism of polyunsaturated fatty acids (PUFA) was investigated by incubating primary cultures after 7 and 14 days with [1-14C]18:2n-6 and [1-14C-]18:3n-3. The change in morphology between epithelial-like primary cultures and fibroblastic-like secondary subcultures was accompanied by alterations in the lipid composition. Polar lipids became predominant by 14 days in culture. The relative proportions of phosphatidylcholine (PC), the most abundant phospholipid, phosphatidylinositol and cholesterol increased significantly, while sphingomyelin decreased. Saturated fatty acids, 18:1n-9, n-6 and n-9PUFA were more abundant in total lipid in cultures at 14 days and 4 months than in cells initially isolated which contained higher percentages of longer chain monoenes and n-3PUFA. The changes in fatty acid composition with time in culture were observed in all the major phospholipid classes. Rainbow trout skin cells in culture desaturated and elongated both 18:2n-6 and 18:3n-3, with 20:4n-6 and 20:5n-3 being the most abundant products, respectively. PC presented the highest incorporation of radioactivity, especially following incubation with 18:3n-3. Lipid metabolism in general increased with the age of primary cultures, with both the amount of C18 PUFA incorporated and metabolised by desaturation/elongation significantly increased in 14 day cultures compared to 7 day cultures. Product/precursor ratios calculated for both n-6 and n-3 fatty acids showed that, while Δ6 desaturase activity was increased significantly with cell age, Δ5 desaturase activity was more affected by the fatty acid series, with 18:3n-3 being more readily transformed to 20:5n-3 than 18:2n-6 to 20:4n-6. Further desaturation of 20:5n-3 to hexaenes was low. Overall, the data suggested that the trout skin cell cultures were more similar to mammalian skin fibroblasts than mammalian epidermal/keratinocyte cultures.
DOI Link: 10.1023/A:1007709508786
Rights: Published in Fish Physiology and Biochemistry by Springer.; The final publication is available at

Files in This Item:
File Description SizeFormat 
RTS1 Final.pdfFulltext - Accepted Version28.19 MBAdobe PDFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.