Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29137
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThomson, Sarah Len_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorVerel, Sébastienen_UK
dc.contributor.editorLiefooghe, Aen_UK
dc.contributor.editorPaquete, Len_UK
dc.date.accessioned2019-03-29T01:01:50Z-
dc.date.available2019-03-29T01:01:50Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29137-
dc.description.abstractWe conduct the first ever statistical comparison between two Local Optima Network (LON) sampling algorithms. These methodologies attempt to capture the connectivity in the local optima space of a fitness landscape. One sampling algorithm is based on a random-walk snowballing procedure, while the other is centred around multiple traced runs of an Iterated Local Search. Both of these are proposed for the Quadratic Assignment Problem (QAP), making this the focus of our study. It is important to note the sampling algorithm frameworks could easily be modified for other domains. In our study descriptive statistics for the obtained search space samples are contrasted and commented on. The LON features are also used in linear mixed models and random forest regression for predicting heuristic optimisation performance of two prominent heuristics for the QAP on the underlying combinatorial problems. The model results are then used to make deductions about the sampling algorithms’ utility. We also propose a specific set of LON metrics for use in future predictive models alongside previously-proposed network metrics, demonstrating the payoff in doing so.en_UK
dc.language.isoenen_UK
dc.publisherSpringer International Publishingen_UK
dc.relationThomson SL, Ochoa G & Verel S (2019) Clarifying the Difference in Local Optima Network Sampling Algorithms. In: Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. The 19th European Conference on Evolutionary Computation in Combinatorial Optimisation, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer International Publishing, pp. 163-178. https://doi.org/10.1007/978-3-030-16711-0_11en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11452en_UK
dc.relation.urihttp://hdl.handle.net/11667/128en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Liefooghe A & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, 11452. The 19th European Conference on Evolutionary Computation in Combinatorial Optimisation, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland: Springer International Publishing, pp. 163-178. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-16711-0_11en_UK
dc.subjectCombinatorial fitness landscapesen_UK
dc.subjectLocal optima networksen_UK
dc.subjectQuadratic Assignment Problemen_UK
dc.titleClarifying the Difference in Local Optima Network Sampling Algorithmsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-16711-0_11en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage163en_UK
dc.citation.epage178en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEPSRC Engineering and Physical Sciences Research Councilen_UK
dc.author.emails.l.thomson@stir.ac.uken_UK
dc.citation.btitleEvolutionary Computation in Combinatorial Optimizationen_UK
dc.citation.conferencedates2019-04-24 - 2019-04-26en_UK
dc.citation.conferencelocationLeipzig, Germanyen_UK
dc.citation.conferencenameThe 19th European Conference on Evolutionary Computation in Combinatorial Optimisationen_UK
dc.citation.date28/03/2019en_UK
dc.citation.isbn9783030148119en_UK
dc.citation.isbn9783030148126en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Littoral Côte d'Opaleen_UK
dc.identifier.scopusid2-s2.0-85064922104en_UK
dc.identifier.wtid1111284en_UK
dc.contributor.orcid0000-0001-6971-7817en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2019-01-11en_UK
dcterms.dateAccepted2019-01-11en_UK
dc.date.filedepositdate2019-03-28en_UK
dc.relation.funderprojectDAASE: Dynamic Adaptive Automated Software Engineeringen_UK
dc.relation.funderrefEP/J017515/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorThomson, Sarah L|0000-0001-6971-7817en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorVerel, Sébastien|en_UK
local.rioxx.projectEP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.contributorLiefooghe, A|en_UK
local.rioxx.contributorPaquete, L|en_UK
local.rioxx.freetoreaddate2019-03-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-03-28|en_UK
local.rioxx.filenamethomson.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783030148126en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
thomson.pdfFulltext - Accepted Version911.01 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.