Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands
Author(s): Pereira, Luciana
Furtado, Luiz
Novo, Evlyn
Sant’Anna, Sidnei
Liesenberg, Veraldo
Silva, Thiago
Keywords: above ground biomass
leaf area index
sar data
wetlands amazon
Issue Date: Sep-2018
Date Deposited: 27-Mar-2019
Citation: Pereira L, Furtado L, Novo E, Sant’Anna S, Liesenberg V & Silva T (2018) Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands. Remote Sensing, 10 (9), pp. 1355-1355.
Abstract: The aim of this study is to evaluate the potential of multifrequency and Full-polarimetric Synthetic Aperture Radar (SAR) data for retrieving both Above Ground Biomass (AGB) and Leaf Area Index (LAI) in the Amazon floodplain forest environment. Two specific questions were proposed: (a) Does multifrequency SAR data perform more efficiently than single-frequency data in estimating LAI and AGB of várzea forests?; and (b) Are quad-pol SAR data more efficient than single- and dual-pol SAR data in estimating LAI and AGB of várzea forest? To answer these questions, data from different sources (TerraSAR-X Multi Look Ground Range Detected (MGD), Radarsat-2 Standard Qual-Pol, advanced land observing satellite (ALOS)/ phased-arrayed L-band SAR (PALSAR-1). Fine-beam dual (FDB) and quad Polarimetric mode) were combined in 10 different scenarios to model both LAI and AGB. A R-platform routine was implemented to automatize the selection of the best regression models. Results indicated that ALOS/PALSAR variables provided the best estimates for both LAI and AGB. Single-frequency L-band data was more efficient than multifrequency SAR. PALSAR-FDB HV-dB provided the best LAI estimates during low-water season. The best AGB estimates at high-water season were obtained by PALSAR-1 quad-polarimetric data. The top three features for estimating AGB were proportion of volumetric scattering and both the first and second dominant phase difference between trihedral and dihedral scattering, extracted from Van Zyl and Touzi decomposition, respectively. The models selected for both AGB and LAI were parsimonious. The Root Mean Squared Error (RMSEcv), relative overall RMSEcv (%) and R2 value for LAI were 0.61%, 0.55% and 13%, respectively, and for AGB, they were 74.6 t·ha−1, 0.88% and 46%, respectively. These results indicate that L-band (ALOS/PALSAR-1) has a high potential to provide quantitative and spatial information about structural forest attributes in floodplain forest environments. This potential may be extended not only with PALSAR-2 data but also to forthcoming missions (e.g., NISAR, Global Ecosystems Dynamics Investigation Lidar (GEDI), BIOMASS, Tandem-L) for promoting wall-to-wall AGB mapping with a high level of accuracy in dense tropical forest regions worldwide.
DOI Link: 10.3390/rs10091355
Rights: This is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
Licence URL(s):

Files in This Item:
File Description SizeFormat 
remotesensing-10-01355.pdfFulltext - Published Version7.04 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.