Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2907
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Effects of dietary vitamin E on antioxidant defence mechanisms of juvenile turbot (Scophthalmus maximus L.), halibut (Hippoglossus hippoglossus L.) and sea bream (Sparus aurata L.)
Author(s): Tocher, Douglas R
Mourente, Gabriel
Van der Eecken, Anne
Evjemo, Jan Ove
Diaz, Esther
Bell, J Gordon
Geurden, I
Lavens, P
Olsen, Yngvar
Contact Email: drt1@stir.ac.uk
Keywords: Halibut
Turbot
Gilthead seabream
alpha-tocopherol
Vitamin E
Antoxidant defence enzymes
Fatty acid compostions
Lipid peroxidation
Fishes Nutrition
Fishes Quality
Lipids Oxidation
Issue Date: Sep-2002
Date Deposited: 14-Apr-2011
Citation: Tocher DR, Mourente G, Van der Eecken A, Evjemo JO, Diaz E, Bell JG, Geurden I, Lavens P & Olsen Y (2002) Effects of dietary vitamin E on antioxidant defence mechanisms of juvenile turbot (Scophthalmus maximus L.), halibut (Hippoglossus hippoglossus L.) and sea bream (Sparus aurata L.). Aquaculture Nutrition, 8 (3), pp. 195-207. https://doi.org/10.1046/j.1365-2095.2002.00205.x
Abstract: In order to enhance growth, survival and quality during early juvenile stages of marine fish it is important to avoid lipid oxidation problems that are known to cause pathologies and disease. The aim of the present study was to characterise and compare the antioxidant systems in juvenile marine fish of commercial importance in European aquaculture, namely turbot (Scophthalmus maximus), halibut (Hippoglossus hippoglossus) and gilthead sea bream (Sparus aurata). The experiment investigated the interaction of the dietary antioxidant micronutrient, vitamin E, with antioxidant defence systems. Fish were fed diets of identical unsaturation index supplemented with graded amounts of vitamin E. The relationships between dietary and subsequent tissue vitamin E levels were determined as well as the effects of vitamin E supplementation on lipid and fatty acid compositions of both liver and whole fish, on the activities of the liver antioxidant defence enzymes, and on the levels of liver and whole body lipid peroxidation products, malondialdehyde (thiobarbituric acid reactive substances, TBARS) and isoprostanes. Growth and survival was only significantly affected in sea bream where feeding the diet with the lowest vitamin E resulted in decreased survival and growth. A gradation was observed in tissue vitamin E and PUFA/vitamin E levels in response to dietary vitamin E levels in all species. The activities of the main radical scavenging enzymes in the liver, catalase, superoxide dismutase and glutathione peroxidase generally reflected dietary and tissue vitamin E levels being highest in fish fed the lowest level of vitamin E. The indicators of lipid peroxidation gave consistent results in all three species, generally being highest in fish fed the unsupplemented diet and generally lowest in fish fed the diet with highest vitamin E. In this respect, isoprostane levels generally paralleled TBARS levels supporting their value as indicators of oxidative stress in fish. Overall the relationships observed were logical in that decreased dietary vitamin E led to decreased levels of tissue vitamin E, and generally higher activities of the liver antioxidant enzymes and higher levels of lipid peroxides.
DOI Link: 10.1046/j.1365-2095.2002.00205.x
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
DT2 paper -final.pdfFulltext - Accepted Version3.14 MBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.