Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/29005
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cuyt, Annie | en_UK |
dc.contributor.author | Lee, Wen-shin | en_UK |
dc.date.accessioned | 2019-03-20T01:01:53Z | - |
dc.date.available | 2019-03-20T01:01:53Z | - |
dc.date.issued | 2008-12-17 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/29005 | - |
dc.description.abstract | To reconstruct a black box multivariate sparse polynomial from its floating point evaluations, the existing algorithms need to know upper bounds for both the number of terms in the polynomial and the partial degree in each of the variables. Here we present a new technique, based on Rutishauser’s qd-algorithm, in which we overcome both drawbacks. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Cuyt A & Lee W (2008) A new algorithm for sparse interpolation of multivariate polynomials. Theoretical Computer Science, 409 (2), pp. 180-185. https://doi.org/10.1016/j.tcs.2008.09.002 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Black box polynomial | en_UK |
dc.subject | Symbolic–numeric sparse interpolation | en_UK |
dc.subject | qd-algorithm | en_UK |
dc.subject | Generalized eigenvalue | en_UK |
dc.subject | Hadamard polynomial | en_UK |
dc.subject | Early termination | en_UK |
dc.title | A new algorithm for sparse interpolation of multivariate polynomials | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [A new algorithm for sparse interpolation of multivariate polynomials.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1016/j.tcs.2008.09.002 | en_UK |
dc.citation.jtitle | Theoretical Computer Science | en_UK |
dc.citation.issn | 0304-3975 | en_UK |
dc.citation.volume | 409 | en_UK |
dc.citation.issue | 2 | en_UK |
dc.citation.spage | 180 | en_UK |
dc.citation.epage | 185 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | University of Antwerp | en_UK |
dc.author.email | wen-shin.lee@stir.ac.uk | en_UK |
dc.citation.date | 06/09/2008 | en_UK |
dc.contributor.affiliation | University of Antwerp | en_UK |
dc.contributor.affiliation | University of Antwerp | en_UK |
dc.identifier.isi | WOS:000261716700003 | en_UK |
dc.identifier.scopusid | 2-s2.0-55749095541 | en_UK |
dc.identifier.wtid | 1046051 | en_UK |
dc.contributor.orcid | 0000-0002-2808-3739 | en_UK |
dc.date.accepted | 2008-05-19 | en_UK |
dcterms.dateAccepted | 2008-05-19 | en_UK |
dc.date.filedepositdate | 2019-03-05 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Cuyt, Annie| | en_UK |
local.rioxx.author | Lee, Wen-shin|0000-0002-2808-3739 | en_UK |
local.rioxx.project | Project ID unknown|University of Antwerp| | en_UK |
local.rioxx.freetoreaddate | 2258-08-07 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | A new algorithm for sparse interpolation of multivariate polynomials.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0304-3975 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A new algorithm for sparse interpolation of multivariate polynomials.pdf | Fulltext - Published Version | 386.37 kB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.