Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/289
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShinn, Andrewen_UK
dc.contributor.authorKay, James Wen_UK
dc.contributor.authorSommerville, Christinaen_UK
dc.date.accessioned2013-06-09T02:38:31Z-
dc.date.available2013-06-09T02:38:31Z-
dc.date.issued2000en_UK
dc.identifier.urihttp://hdl.handle.net/1893/289-
dc.description.abstractThis study applies flexible statistical methods to morphometric measurements obtained via light and scanning electron microscopy (SEM) to discriminate closely related species of Gyrodactylus parasitic on salmonids. For the first analysis, morphometric measurements taken from the opisthaptoral hooks and bars of 5 species of gyrodactylid were derived from images obtained by SEM and used to assess the prediction performance of 4 statistical methods (nearest neighbours; feed-forward neural network; projection pursuit regression and linear discriminant analysis). The performance of 2 methods, nearest neighbours and a feed-forward neural network provided perfect discrimination of G. salaris from 4 other species of Gyrodactylus when using measurements taken from only a single structure, the marginal hook. Data derived from images using light microscopy taken from the full complement of opisthaptoral hooks and bars were also tested and nearest neighbours and linear discriminant analysis gave perfect discrimination of G. salaris from G. derjavini Mikailov, 1975 and G. truttae Gläser, 1974. The nearest neighbours method had the least misclassifications and was therefore assessed further for the analysis of individual hooks. Five morphometric parameters from the marginal hook subset (total length, shaft length, sickle length, sickle proximal width and sickle distal width) gave near perfect discrimination of G. salaris. For perfect discrimination therefore, larger numbers of parameters are required at the light level than at the SEM level.en_UK
dc.language.isoenen_UK
dc.publisherCambridge University Pressen_UK
dc.relationShinn A, Kay JW & Sommerville C (2000) The use of statistical classifiers for the discrimination of species of the genus Gyrodactylus (Monogenea) parasitizing salmonids. Parasitology, 120 (3), pp. 261-269. https://doi.org/10.1017/S0031182099005454en_UK
dc.rightsPublished in Parasitology, copyright by Cambridge University.en_UK
dc.subjectSalmonidae Parasitesen_UK
dc.subjectSalmonidae Diseasesen_UK
dc.subjectScanning electron microscopyen_UK
dc.subjectMonogeneaen_UK
dc.titleThe use of statistical classifiers for the discrimination of species of the genus Gyrodactylus (Monogenea) parasitizing salmonidsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1017/S0031182099005454en_UK
dc.citation.jtitleParasitologyen_UK
dc.citation.issn1469-8161en_UK
dc.citation.issn0031-1820en_UK
dc.citation.volume120en_UK
dc.citation.issue3en_UK
dc.citation.spage261en_UK
dc.citation.epage269en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.identifier.isiWOS:000086241900005en_UK
dc.identifier.scopusid2-s2.0-0034060075en_UK
dc.identifier.wtid839087en_UK
dc.contributor.orcid0000-0002-5434-2685en_UK
dcterms.dateAccepted2000-12-31en_UK
dc.date.filedepositdate2008-03-05en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorShinn, Andrew|0000-0002-5434-2685en_UK
local.rioxx.authorKay, James W|en_UK
local.rioxx.authorSommerville, Christina|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2008-03-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2008-03-05|en_UK
local.rioxx.filenameuse-of-statistical-classifiers.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0031-1820en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
use-of-statistical-classifiers.pdfFulltext - Published Version261.21 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.