Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28847
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVagliano, Iacopoen_UK
dc.contributor.authorFessl, Angelaen_UK
dc.contributor.authorGünther, Franziskaen_UK
dc.contributor.authorKöhler, Thomasen_UK
dc.contributor.authorMezaris, Vasileiosen_UK
dc.contributor.authorSaleh, Ahmeden_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.contributor.authorŠimić, Ilijaen_UK
dc.contributor.editorHuet, Ben_UK
dc.contributor.editorKompatsiaris, Ien_UK
dc.contributor.editorVrochidis, Sen_UK
dc.contributor.editorMezaris, Ven_UK
dc.contributor.editorCheng, Wen_UK
dc.contributor.editorGurrin, Cen_UK
dc.date.accessioned2019-02-21T11:03:45Z-
dc.date.available2019-02-21T11:03:45Z-
dc.date.issued2019-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28847-
dc.description.abstractThe MOVING platform enables its users to improve their information literacy by training how to exploit data and text mining methods in their daily research tasks. In this paper, we show how it can support researchers in various tasks, and we introduce its main features, such as text and video retrieval and processing, advanced visualizations, and the technologies to assist the learning process.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationVagliano I, Fessl A, Günther F, Köhler T, Mezaris V, Saleh A, Scherp A & Šimić I (2019) Training researchers with the MOVING platform. In: Huet B, Kompatsiaris I, Vrochidis S, Mezaris V, Cheng W & Gurrin C (eds.) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science, 11295. MMM 2019: International Conference on Multimedia Modeling, Thessaloniki, Greece, 08.01.2019-11.01.2019. Cham, Switzerland: Springer Verlag, pp. 560-565. https://doi.org/10.1007/978-3-030-05716-9_46en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11295en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Proc. 25th Int. Conf. on Multimedia Modeling (MMM 2019), Springer LNCS vol. 11296. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-05716-9_46en_UK
dc.subjectTechnology enhanced learningen_UK
dc.subjectInformation retrievalen_UK
dc.subjectText and video analysisen_UK
dc.subjectRecommender systemsen_UK
dc.titleTraining researchers with the MOVING platformen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-05716-9_46en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage560en_UK
dc.citation.epage565en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEuropean Commissionen_UK
dc.citation.btitleMultiMedia Modeling. MMM 2019en_UK
dc.citation.conferencedates2019-01-08 - 2019-01-11en_UK
dc.citation.conferencelocationThessaloniki, Greeceen_UK
dc.citation.conferencenameMMM 2019: International Conference on Multimedia Modelingen_UK
dc.citation.date11/12/2018en_UK
dc.citation.isbn978-3-030-05715-2en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationKnow-Center Grazen_UK
dc.contributor.affiliationDresden University of Technologyen_UK
dc.contributor.affiliationDresden University of Technologyen_UK
dc.contributor.affiliationCentre for Research and Technology Hellas (CERTH)en_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationKnow-Center Grazen_UK
dc.identifier.scopusid2-s2.0-85059845816en_UK
dc.identifier.wtid1101025en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2018-09-17en_UK
dc.description.refREF Eligible with Permitted Exceptionen_UK
dc.date.filedepositdate2019-02-19en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
mmm19_lncs11296_2_preprint.pdfFulltext - Accepted Version869.62 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.