Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMavragani, Amaryllisen_UK
dc.contributor.authorTsagarakis, Konstantinos Pen_UK
dc.date.accessioned2019-02-01T01:01:05Z-
dc.date.available2019-02-01T01:01:05Z-
dc.date.issued2019-01-14en_UK
dc.identifier.other3en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28676-
dc.description.abstractIn addressing the challenge of Big Data Analytics, what has been of notable significance is the analysis of online search traffic data in order to analyze and predict human behavior. Over the last decade, since the establishment of the most popular such tool, Google Trends, the use of online data has been proven valuable in various research fields, including -but not limited to- medicine, economics, politics, the environment, and behavior. In the field of politics, given the inability of poll agencies to always well approximate voting intentions and results over the past years, what is imperative is to find new methods of predicting elections and referendum outcomes. This paper aims at presenting a methodology of predicting referendum results using Google Trends; a method applied and verified in six separate occasions: the 2014 Scottish Referendum, the 2015 Greek Referendum, the 2016 UK Referendum, the 2016 Hungarian Referendum, the 2016 Italian Referendum, and the 2017 Turkish Referendum. Said referendums were of importance for the respective country and the EU as well, and received wide international attention. Google Trends has been empirically verified to be a tool that can accurately measure behavioral changes as it takes into account the users’ revealed and not the stated preferences. Thus we argue that, in the time of intelligence excess, Google Trends can well address the analysis of social changes that the internet brings.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Natureen_UK
dc.relationMavragani A & Tsagarakis KP (2019) Predicting referendum results in the Big Data Era. Journal of Big Data, 6 (1), Art. No.: 3. https://doi.org/10.1186/s40537-018-0166-zen_UK
dc.rights© The Author(s) 2019 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectBig dataen_UK
dc.subjectElectionsen_UK
dc.subjectGoogleen_UK
dc.subjectTrendsen_UK
dc.subjectInternet behavioren_UK
dc.subjectNowcastingen_UK
dc.subjectOnline behavioren_UK
dc.subjectOnline queriesen_UK
dc.subjectPoliticsen_UK
dc.subjectPredictionen_UK
dc.subjectReferendumen_UK
dc.subjectVotingen_UK
dc.titlePredicting referendum results in the Big Data Eraen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1186/s40537-018-0166-zen_UK
dc.citation.jtitleJournal Of Big Dataen_UK
dc.citation.issn2196-1115en_UK
dc.citation.volume6en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date14/01/2019en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationDemocritus University of Thraceen_UK
dc.identifier.scopusid2-s2.0-85060160748en_UK
dc.identifier.wtid1102513en_UK
dc.contributor.orcid0000-0001-6106-0873en_UK
dc.contributor.orcid0000-0003-4340-6118en_UK
dc.date.accepted2018-12-18en_UK
dcterms.dateAccepted2018-12-18en_UK
dc.date.filedepositdate2019-01-31en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMavragani, Amaryllis|0000-0001-6106-0873en_UK
local.rioxx.authorTsagarakis, Konstantinos P|0000-0003-4340-6118en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2019-01-31en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2019-01-31|en_UK
local.rioxx.filenames40537-018-0166-z.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s40537-018-0166-z.pdfFulltext - Published Version3.57 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.