Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28429
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Seaweed-fed black soldier fly (Hermetia illucens) larvae as feed for salmon aquaculture: assessing the risks of pathogen transfer
Author(s): Swinscoe, Isobel
Oliver, David M
Gilburn, Andre S
Lunestad, Bjørn
Lock, Erik-Jan
Ørnsrud, Robin
Quilliam, Richard S
Contact Email: richard.quilliam@stir.ac.uk
Keywords: feed hygiene
food safety
HACCP
microbiological safety
food production chain
Issue Date: Feb-2019
Citation: Swinscoe I, Oliver DM, Gilburn AS, Lunestad B, Lock E, Ørnsrud R & Quilliam RS (2019) Seaweed-fed black soldier fly (Hermetia illucens) larvae as feed for salmon aquaculture: assessing the risks of pathogen transfer. Journal of Insects as Food and Feed, 5 (1), pp. 15-27. https://doi.org/10.3920/jiff2017.0067
Abstract: Sustainable ingredients for animal feed are becoming scarcer. Insects have emerged as a promising protein and lipid ingredient for fish feed, and black soldier fly (BSF; Hermetia illucens) larvae in particular have great potential to efficiently convert organic matter into high value protein and fat. Seaweeds are a sustainable source of organic matter and complex carbohydrates, but can also provide marine long chain polyunsaturated fatty acids for fly larvae, and therefore could offer a commercially attractive alternative to traditional aquafeeds. However, pathogenic bacteria and faecal indicator organisms (FIOs) readily attach to seaweeds, therefore before this novel BSF larvae feed ingredient is advocated, microbiological risk assessments are warranted to ensure animal and public health protection from farm-to-fork. In this study, screening of raw materials and finished products during formulation of experimental insect meal fish feed was undertaken to evaluate the potential for the introduction of selected bacterial pathogens and FIOs via seaweed substrate to BSF larvae, and subsequent survival during multiple manufacturing processing stages. Processed seaweed powder was found to be a microbiologically safe feed substrate for BSF larvae. Low levels of FIOs were associated with larvae at the point of harvest, although larvae meal and extracted lipids were free of FIOs immediately after processing. During handling, distribution and storage the larvae meal and other externally sourced raw feed ingredients for larvae rearing and feed pellet formation became contaminated with FIOs and Listeria spp. FIOs were also present, albeit at very low levels, in the finished feed pellets. Processing treatments provided effective decontamination, and FIO and pathogen concentrations in finished products never exceeded microbiological quality standards for insect processed animal proteins. Microbiological contamination of raw materials and finished products during packaging and distribution, or originating from production environments, were identified as critical control points, requiring assessment to ensure good hygiene practices.
DOI Link: 10.3920/jiff2017.0067
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.

Files in This Item:
File Description SizeFormat 
Final Word Version of Accepted JIFF Manuscript.pdfFulltext - Accepted Version519.29 kBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.