Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28372
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland
Author(s): Gandy, Niall
Gregoire, Lauren J
Ely, Jeremy C
Clark, Christopher D
Hodgson, David M
Lee, Victoria
Bradwell, Tom
Ivanovic, Ruza F
Issue Date: 23-Nov-2018
Date Deposited: 6-Dec-2018
Citation: Gandy N, Gregoire LJ, Ely JC, Clark CD, Hodgson DM, Lee V, Bradwell T & Ivanovic RF (2018) Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland. <i>Cryosphere</i>, 12 (11), pp. 3635-3651. https://doi.org/10.5194/tc-12-3635-2018
Abstract: Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. The last deglaciation of the British–Irish Ice Sheet offers a valuable example to examine these processes. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British–Irish Ice Sheet during the last deglaciation, is constrained with abundant empirical data which can be used to inform, validate, and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We perform simplified experiments of the retreat of this ice stream under an idealised climate forcing to isolate the effect of marine ice sheet processes, simulating retreat from the continental shelf under constant "warm" surface mass balance and sub-ice-shelf melt. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at the mouth of the Minch strait between mainland Scotland and the Isle of Lewis, resulting in a marine setting similar to many large tidewater glaciers in Greenland and Antarctica. At this stage of the simulation, the presence of an ice shelf becomes a more important control on grounded ice volume, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the marine ice sheet instability and ice shelf buttressing during the deglaciation of parts of the British–Irish Ice Sheet. We conclude that geological data could be applied to further constrain these processes in ice sheet models used for projecting the future of contemporary ice sheets.
DOI Link: 10.5194/tc-12-3635-2018
Rights: © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
MarineIceSheetInstability.pdfFulltext - Published Version5.84 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.