Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/28308
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Identifying the tree species compositions that maximize ecosystem functioning in European forests |
Author(s): | Baeten, Lander Bruelheide, Helge van der Plas, Fons Kambach, Stephan Ratcliffe, Sophia Jucker, Tommaso Allan, Eric Ampoorter, Evy Barbaro, Luc Bastias, Cristina C Bauhus, Jürgen Benavides, Raquel Bonal, Damien Bouriaud, Olivier Joly, François-Xavier |
Contact Email: | francois-xavier.joly1@stir.ac.uk |
Keywords: | Ecology forest management FunDivEUROPE ecosystem multifunctionality overyielding species interactions tree species mixtures productivity forestry |
Issue Date: | Mar-2019 |
Date Deposited: | 27-Nov-2018 |
Citation: | Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, Allan E, Ampoorter E, Barbaro L, Bastias CC, Bauhus J, Benavides R, Bonal D, Bouriaud O & Joly F (2019) Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 56 (3), pp. 733-744. https://doi.org/10.1111/1365-2664.13308 |
Abstract: | 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence‐based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximise functioning, rather than with diversity per se. 2. We used a dataset of thirty ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximise annual above ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the ‘best’ and ‘worst’ species composition for multifunctionality. Finally, we evaluated the real‐world frequency of occurrence of best and worst mixtures, using harmonised data from multiple national forest inventories. 3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high or low average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below‐average multifunctionality and productivity. 4. Synthesis and applications. Species identity and composition effects are essential to the development of high‐performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade‐off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations. |
DOI Link: | 10.1111/1365-2664.13308 |
Rights: | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is the peer reviewed version of the following article: Baeten, L, Bruelheide, H, Plas, F, et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol. 2019; 56: 733– 744, which has been published in final form at https://doi.org/10.1111/1365-2664.13308. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving. |
Notes: | Additional co-authors: Filippo Bussotti, Monique Carnol, Bastien Castagneyrol, Yohan Charbonnier, Ewa Chećko, David A Coomes, Jonas Dahlgren, Seid Muhie Dawud, Hans De Wandeler, Timo Domisch, Leena Finér, Markus Fischer, Mariangela Fotelli, Arthur Gessler, Charlotte Grossiord, Virginie Guyot, Stephan Hättenschwiler, Hervé Jactel, Bogdan Jaroszewicz, Julia Koricheva, Aleksi Lehtonen, Sandra Müller, Bart Muys, Diem Nguyen, Martina Pollastrini, Kalliopi Radoglou, Karsten Raulund-Rasmussen, Paloma Ruiz-Benito, Federico Selvi, Jan Stenlid, Fernando Valladares, Lars Vesterdal, Kris Verheyen, Christian Wirth, A Zavala Miguel, Michael Scherer-Lorenzen |
Licence URL(s): | https://storre.stir.ac.uk/STORREEndUserLicence.pdf |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Baeten_et_al-2018-Journal_of_Applied_Ecology.pdf | Fulltext - Accepted Version | 504.98 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.