Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28199
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmato, Giuseppeen_UK
dc.contributor.authorChávez, Edgaren_UK
dc.contributor.authorConnor, Richarden_UK
dc.contributor.authorFalchi, Fabrizioen_UK
dc.contributor.authorGennaro, Claudioen_UK
dc.contributor.authorVadicamo, Luciaen_UK
dc.contributor.editorMarchand-Maillet, S.en_UK
dc.contributor.editorSilva, Y. N.en_UK
dc.contributor.editorChavez, E.en_UK
dc.date.accessioned2018-11-10T01:00:53Z-
dc.date.available2018-11-10T01:00:53Z-
dc.date.issued2018-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28199-
dc.description.abstractIn the realm of metric search, the permutation-based approaches have shown very good performance in indexing and supporting approximate search on large databases. These methods embed the metric objects into a permutation space where candidate results to a given query can be efficiently identified. Typically, to achieve high effectiveness, the permutation-based result set is refined by directly comparing each candidate object to the query one. Therefore, one drawback of these approaches is that the original dataset needs to be stored and then accessed during the refining step. We propose a refining approach based on a metric embedding, called n-Simplex projection, that can be used on metric spaces meeting the n-point property. The n-Simplex projection provides upper- and lower-bounds of the actual distance, derived using the distances between the data objects and a finite set of pivots. We propose to reuse the distances computed for building the data permutations to derive these bounds and we show how to use them to improve the permutation-based results. Our approach is particularly advantageous for all the cases in which the traditional refining step is too costly, e.g. very large dataset or very expensive metric function.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationAmato G, Chávez E, Connor R, Falchi F, Gennaro C & Vadicamo L (2018) Re-ranking Permutation-Based Candidate Sets with the n-Simplex Projection. In: Marchand-Maillet S, Silva YN & Chavez E (eds.) 11th International Conference on Similarity Search and Applications, SISAP 2018. Lecture Notes in Computer Science, 11223. SISAP 2018: International Conference on Similarity Search and Applications, Lima, Peru, 07.10.2018-09.10.2018. Cham, Switzerland: Springer Verlag, pp. 3-17. https://doi.org/10.1007/978-3-030-02224-2_1en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 11223en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Marchand-Maillet S, Silva YN & Chavez E (eds.) 11th International Conference on Similarity Search and Applications, SISAP 2018. Lecture Notes in Computer Science, 11223. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-02224-2_1en_UK
dc.subjectMetric searchen_UK
dc.subjectPermutation-based indexingen_UK
dc.subjectn-point propertyen_UK
dc.subjectn-Simplex projectionen_UK
dc.subjectMetric embeddingen_UK
dc.subjectDistance boundsen_UK
dc.titleRe-ranking Permutation-Based Candidate Sets with the n-Simplex Projectionen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-02224-2_1en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage3en_UK
dc.citation.epage17en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitle11th International Conference on Similarity Search and Applications, SISAP 2018en_UK
dc.citation.conferencedates2018-10-07 - 2018-10-09en_UK
dc.citation.conferencelocationLima, Peruen_UK
dc.citation.conferencenameSISAP 2018: International Conference on Similarity Search and Applicationsen_UK
dc.citation.date04/10/2018en_UK
dc.citation.isbn9783030022235en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.contributor.affiliationCentro de Investigación Científica y de Educación Superior de Ensenada (CICESEen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.contributor.affiliationVisual Computing Group, CNR-ISTIen_UK
dc.identifier.isiWOS:000616693700001en_UK
dc.identifier.scopusid2-s2.0-85055133979en_UK
dc.identifier.wtid1051759en_UK
dc.contributor.orcid0000-0003-4734-8103en_UK
dc.date.accepted2018-07-09en_UK
dcterms.dateAccepted2018-07-09en_UK
dc.date.filedepositdate2018-11-09en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAmato, Giuseppe|en_UK
local.rioxx.authorChávez, Edgar|en_UK
local.rioxx.authorConnor, Richard|0000-0003-4734-8103en_UK
local.rioxx.authorFalchi, Fabrizio|en_UK
local.rioxx.authorGennaro, Claudio|en_UK
local.rioxx.authorVadicamo, Lucia|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMarchand-Maillet, S.|en_UK
local.rioxx.contributorSilva, Y. N.|en_UK
local.rioxx.contributorChavez, E.|en_UK
local.rioxx.freetoreaddate2018-11-09en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-11-09|en_UK
local.rioxx.filenameSISAP_2018_reranking.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783030022235en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
SISAP_2018_reranking.pdfFulltext - Accepted Version1.41 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.