Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28180
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions
Author(s): Sjogersten, Sofie
Wookey, Philip
Contact Email: philip.wookey1@stir.ac.uk
Keywords: Decomposition
ecotone
fennoscandia
litter
mountain birch
Issue Date: 31-May-2004
Date Deposited: 6-Nov-2018
Citation: Sjogersten S & Wookey P (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil, 262 (1-2), pp. 215-227. https://doi.org/10.1023/B%3APLSO.0000037044.63113.fe
Abstract: Litter decomposition is a key process in terrestrial ecosystems, releasing nutrients, returning CO 2 to the atmosphere, and contributing to the formation of humus. Litter decomposition is strongly controlled both by climate and by litter quality: global warming scenarios involving shifts in vegetation communities are therefore of particular interest in this context. The objective of the present study was to quantify the role of climatic environment and underlying substrate chemistry for the decomposition of standard mountain birch (Betula pubescens Ehrh. spp. czerepanovii) leaf litter at four sites, spanning the forest-tundra ecotone, in the Fennoscandian mountain range. Litter quality effects were thus held constant, but the study incorporated systematic changes in (i) latitude/altitude, (ii) 'continentality', and (iii) vegetation community at each site, together with (iv) experimental manipulation of temperature using passive warming systems. The study was undertaken during a 3 year period, and forms part of a broader investigation of forest-tundra ecotone dynamics in the Fennoscandian mountains. Our results showed (1) higher decomposition rates in forest sites compared to tundra, (2) that the difference between the two vegetation communities was most pronounced at the more maritime sites, and (3) that chemistry of litter remaining after the three years experiment varied according to site and vegetation community (e.g. at the most southerly site, more lignin had decomposed at tundra communities compared with the forest). (4) Surface temperature explained 58% of the variation in mass loss at forest sites; at tundra sites, however, we hypothesise that litter moisture content was the more important factor. (5) Experimental warming lent weight to this hypothesis by reducing rates of mass loss: this reduction was likely the result of surface soil drying, an artefact of the warming treatment. We conclude that a replacement of tundra by forest would likely accelerate litter decomposition both via changes in surface and near-surface temperature and moisture regimes, although the strength of this response will vary between maritime and continental parts of the mountain range.
DOI Link: 10.1023/B:PLSO.0000037044.63113.fe
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
10.10232FB_PLSO.0000037044.63113.fe.pdfFulltext - Published Version189.29 kBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.