Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcCaig, Chrisen_UK
dc.contributor.authorNorman, Rachelen_UK
dc.contributor.authorShankland, Carronen_UK
dc.date.accessioned2013-10-08T01:56:19Z-
dc.date.available2013-10-08T01:56:19Z-
dc.date.issued2011-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/2817-
dc.description.abstractA new semantics in terms of Mean Field Equations is presented for WSCCS (Weighted Synchronous Calculus of Communicating Systems). The semantics captures the average behaviour of the system over time, but without computing the entire state space, therefore avoiding the state space explosion problem. This allows easy investigation of models with large numbers of components. The new semantics is shown to be equivalent to the standard Discrete Time Markov Chain semantics of WSCCS as the number of processes tends to infinity. The method of deriving the semantics is illustrated with examples drawn from biology and from computing.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationMcCaig C, Norman R & Shankland C (2011) From Individuals to Populations: a mean field semantics for process algebra. Theoretical Computer Science, 412 (17), pp. 1557-1580. http://www.sciencedirect.com/science/journal/03043975; https://doi.org/10.1016/j.tcs.2010.09.024en_UK
dc.rightsPublished in Theoretical Computer Science by Elsevier. Theoretical Computer Science, Volume 412, Issue 17, April 2011, pp. 1557 - 1580.; This is the peer reviewed version of this article.; NOTICE: this is the author’s version of a work that was accepted for publication in Theoretical Computer Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Theoretical Computer Science, VOL 412, ISSUE 17, (April 2011) DOI 10.1016/j.tcs.2010.09.024.en_UK
dc.subjectProcess Algebraen_UK
dc.subjectMean Field Equationsen_UK
dc.subjectSemanticsen_UK
dc.subjectParallel processing (Electronic computers)en_UK
dc.subjectPopulation dynamicsen_UK
dc.titleFrom Individuals to Populations: a mean field semantics for process algebraen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.tcs.2010.09.024en_UK
dc.citation.jtitleTheoretical Computer Scienceen_UK
dc.citation.issn0304-3975en_UK
dc.citation.volume412en_UK
dc.citation.issue17en_UK
dc.citation.spage1557en_UK
dc.citation.epage1580en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.sciencedirect.com/science/journal/03043975en_UK
dc.author.emailran@maths.stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000288835600003en_UK
dc.identifier.scopusid2-s2.0-79952070026en_UK
dc.identifier.wtid829546en_UK
dc.contributor.orcid0000-0002-7398-6064en_UK
dc.contributor.orcid0000-0001-7672-2884en_UK
dc.date.accepted1990-01-01en_UK
dcterms.dateAccepted1990-01-01en_UK
dc.date.filedepositdate2011-03-29en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMcCaig, Chris|en_UK
local.rioxx.authorNorman, Rachel|0000-0002-7398-6064en_UK
local.rioxx.authorShankland, Carron|0000-0001-7672-2884en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2011-04-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2011-04-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2011-04-30|en_UK
local.rioxx.filenamefrom individuals to populations.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0304-3975en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
from individuals to populations.pdfFulltext - Accepted Version402.97 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.