Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28158
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland
Author(s): Sjogersten, Sofie
Wookey, Philip
Contact Email: philip.wookey1@stir.ac.uk
Keywords: Arrhenius
carbon dioxide
ecotone
soil respiration
temperature
Issue Date: 30-Nov-2002
Citation: Sjogersten S & Wookey P (2002) Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biology and Biochemistry, 34 (11), pp. 1633-1646. https://doi.org/10.1016/S0038-0717%2802%2900147-5.
Abstract: We studied resource quality and climatic constraints on soil respiration over a mountain birch forest-tundra ecotone in northern Swedish Lapland during 1999-2001 by means of both a field-based soil transplant experiment and a laboratory incubation experiment. Average carbon dioxide fluxes over the 2000 thaw season were 0.62 and 0.48 g CO2 m-2h-11, at forest and tundra control plots, respectively. We attribute the higher respiration rate at the forest site mainly to more favourable microclimate but also to higher resource quality. Temperature-respiration relationships described using Arrhenius equations explained 37% of the variation in the tundra soil respiration and 42% for the forest soils on a season-wide basis in 2000. Q10 values (exponential temperature-response) were generally high (except in August in the field experiment) compared to the global average (2.4) and varied over time, with increased temperature-dependency at low soil temperatures. In the laboratory, higher activation energy was found in soils incubated at higher temperatures (12 and 17°C; in the range 133-109 kJ mol-1) compared with lower temperatures (2 and 7°C; in the range 98-92 kJ mol-1) suggesting an adaptation of the decomposer community toward more psychrophilic organisms or metabolism in low-temperature environments. Soil moisture, however, could also play an important role in modifying any temperature response of soil respiration in this sub-arctic ecotone area. These mesic soils have a relatively rapid turnover time of carbon and should be compared to boreal forest and temperate woodland in carbon dynamics. We conclude that a shift from tundra to birch forest would give an initial pulse of carbon released from soil to the atmosphere as labile carbon stored in tundra soils is metabolised by decomposer organisms. © 2002 Elsevier Science Ltd. All rights reserved.
DOI Link: 10.1016/S0038-0717(02)00147-5
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.

Files in This Item:
File Description SizeFormat 
1-s2.0-S0038071702001475-main.pdfFulltext - Published Version259 kBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.