Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28144
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAjao, Oluwaseunen_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorZargari, Shahrzaden_UK
dc.date.accessioned2018-11-09T01:00:07Z-
dc.date.available2018-11-09T01:00:07Z-
dc.date.issued2018-10-25en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28144-
dc.description.abstractInferring locations from user texts on social media platforms is a non-trivial and challenging problem relating to public safety. We propose a novel non-uniform grid-based approach for location inference from Twitter messages using Quadtree spatial partitions. The proposed algorithm uses natural language processing (NLP) for semantic understanding and incorporates Cosine similarity and Jaccard similarity measures for feature vector extraction and dimensionality reduction. We chose Twitter as our experimental social media platform due to its popularity and effectiveness for the dissemination of news and stories about recent events happening around the world. Our approach is the first of its kind to make location inference from tweets using Quadtree spatial partitions and NLP, in hybrid word-vector representations. The proposed algorithm achieved significant classification accuracy and outperformed state-of-the-art grid-based content-only location inference methods by up to 24% in correctly predicting tweet locations within a 161km radius and by 300km in median error distance on benchmark datasets.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationAjao O, Bhowmik D & Zargari S (2018) Content-Aware Tweet Location Inference Using Quadtree Spatial Partitioning and Jaccard-Cosine Word Embedding. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28.08.2018-31.08.2018. Piscataway, NJ, USA: IEEE, pp. 1116-1123. https://doi.org/10.1109/asonam.2018.8508257en_UK
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectTwitteren_UK
dc.subjectNatural language processingen_UK
dc.subjectInference algorithmsen_UK
dc.subjectFeature extractionen_UK
dc.subjectSafetyen_UK
dc.subjectPartitioning algorithmsen_UK
dc.titleContent-Aware Tweet Location Inference Using Quadtree Spatial Partitioning and Jaccard-Cosine Word Embeddingen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/asonam.2018.8508257en_UK
dc.citation.issn2473-991Xen_UK
dc.citation.spage1116en_UK
dc.citation.epage1123en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderSheffield Hallam Universityen_UK
dc.citation.btitle2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)en_UK
dc.citation.conferencedates2018-08-28 - 2018-08-31en_UK
dc.citation.conferencelocationBarcelona, Spainen_UK
dc.citation.conferencename2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)en_UK
dc.citation.date25/10/2018en_UK
dc.citation.isbn9781538660515en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationSheffield Hallam Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationSheffield Hallam Universityen_UK
dc.identifier.wtid1045923en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.date.accepted2018-07-02en_UK
dcterms.dateAccepted2018-07-02en_UK
dc.date.filedepositdate2018-11-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAjao, Oluwaseun|en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorZargari, Shahrzad|en_UK
local.rioxx.projectProject ID unknown|Sheffield Hallam University|http://dx.doi.org/10.13039/100010035en_UK
local.rioxx.freetoreaddate2018-11-07en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-11-07|en_UK
local.rioxx.filenameRP-ASONAM_2018_paper_102.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781538660515en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
RP-ASONAM_2018_paper_102.pdfFulltext - Accepted Version493.96 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.