Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28075
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDividino, Renataen_UK
dc.contributor.authorGottron, Thomasen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.contributor.authorGröner, Gerden_UK
dc.contributor.editorDemidova, Een_UK
dc.contributor.editorDietze, Sen_UK
dc.contributor.editorSzymanski, Jen_UK
dc.contributor.editorBreslin, Jen_UK
dc.date.accessioned2018-11-06T15:31:58Z-
dc.date.available2018-11-06T15:31:58Z-
dc.date.issued2014-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28075-
dc.description.abstractThe Linked Open Data (LOD) cloud changes frequently. Recent approaches focus mainly on quantifying the changes that occur in the LOD cloud by comparing two snapshots of a linked dataset captured at two different points in time. These change metrics are able to measure absolute changes between these two snapshots. However, they cannot determine the dynamics of a dataset over a period of time, i.e., the intensity of how the data evolved in this period. In this paper, we present a general framework to analyse the dynamics of linked datasets within a given time interval. We propose a function to measure the dynamics of a LOD dataset, which is defined as the aggregation of absolute, infinitesimal changes, provided by change metrics. Our method can be parametrised to incorporate and make use of existing change metrics. Furthermore, our framework enables the use of different decay functions within the dynamics computation for different weights on changes depending on when they occurred in the observed time interval. We apply our framework to conduct an investigation on the dynamics of selected LOD datasets. We apply our analysis on a large-scale LOD dataset that is obtained from the LOD cloud by weekly crawls over more than a year. Finally, we discuss the benefits and potential applications of our dynamics function in a real world scenario.en_UK
dc.language.isoenen_UK
dc.publisherCEUR Workshop Proceedingsen_UK
dc.relationDividino R, Gottron T, Scherp A & Gröner G (2014) From changes to dynamics: Dynamics analysis of linked open data sources. In: Demidova E, Dietze S, Szymanski J & Breslin J (eds.) Proceedings of the 1st International Workshop on Dataset Profiling & Federated Search for Linked Data co-located with the 11th Extended Semantic Web Conference (ESWC 2014), volume 1151. CEUR Workshop Proceedings, 1151. Profiles 2014, Anissaras, Greece, 26.05.2014-26.05.2014. Aachen, Germany: CEUR Workshop Proceedings.en_UK
dc.relation.ispartofseriesCEUR Workshop Proceedings, 1151en_UK
dc.rightsThe copyright is owned by the authors. Copying is permitted only for private and academic purposes. The permission for academic use implies an attribution obligation, i.e., you must properly cite the items that you use in your own published work. Modification is not permitted unless a suitable license is granted by its copyright owners. Copying or use for commercial purposes is forbidden unless an explicit permission is acquired from the copyright owners.en_UK
dc.titleFrom changes to dynamics: Dynamics analysis of linked open data sourcesen_UK
dc.typeConference Paperen_UK
dc.citation.jtitleCEUR Workshop Proceedingsen_UK
dc.citation.issn1613-0073en_UK
dc.citation.volume1151en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.citation.btitleProceedings of the 1st International Workshop on Dataset Profiling & Federated Search for Linked Data co-located with the 11th Extended Semantic Web Conference (ESWC 2014)en_UK
dc.citation.conferencedates2014-05-26 - 2014-05-26en_UK
dc.citation.conferencelocationAnissaras, Greeceen_UK
dc.citation.conferencenameProfiles 2014en_UK
dc.citation.isbnN/Aen_UK
dc.publisher.addressAachen, Germanyen_UK
dc.contributor.affiliationUniversity of Koblenz-Landauen_UK
dc.contributor.affiliationUniversity of Koblenz-Landauen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Duisburg-Essenen_UK
dc.identifier.scopusid2-s2.0-84921947568en_UK
dc.identifier.wtid1007358en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2014-04-01en_UK
dcterms.dateAccepted2014-04-01en_UK
dc.date.filedepositdate2018-10-26en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDividino, Renata|en_UK
local.rioxx.authorGottron, Thomas|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.authorGröner, Gerd|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.contributorDemidova, E|en_UK
local.rioxx.contributorDietze, S|en_UK
local.rioxx.contributorSzymanski, J|en_UK
local.rioxx.contributorBreslin, J|en_UK
local.rioxx.freetoreaddate2018-10-26en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2018-10-26|en_UK
local.rioxx.filenameDividino et al 2014.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.sourceN/Aen_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Dividino et al 2014.pdfFulltext - Published Version562.84 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.