Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVagliano, Iacopoen_UK
dc.contributor.authorGalke, Lukasen_UK
dc.contributor.authorMai, Florianen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-11-06T15:16:47Z-
dc.date.available2018-11-06T15:16:47Z-
dc.date.issued2018-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28073-
dc.description.abstractThe task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i. e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of current playlist. The ACM Recommender Systems Challenge 2018 focuses on such task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team Unconscious Bias and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.en_UK
dc.language.isoenen_UK
dc.publisherACM Pressen_UK
dc.relationVagliano I, Galke L, Mai F & Scherp A (2018) Using Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuation. In: Proceedings of the ACM Recommender Systems Challenge 2018 (RecSys Challenge '18). ACM Recommender Systems Challenge 2018 (RecSys Challenge '18), Vancouver, Canada, 07.10.2018-07.10.2018. New York: ACM Press. https://doi.org/10.1145/3267471.3267476en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectMusic recommender systemsen_UK
dc.subjectneural networksen_UK
dc.subjectadversarial autoencodersen_UK
dc.subjectmulti-modal recommenderen_UK
dc.subjectautomatic playlist continuationen_UK
dc.titleUsing Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuationen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Vagliano et al 2018.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/3267471.3267476en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the ACM Recommender Systems Challenge 2018 (RecSys Challenge '18)en_UK
dc.citation.conferencedates2018-10-07 - 2018-10-07en_UK
dc.citation.conferencelocationVancouver, Canadaen_UK
dc.citation.conferencenameACM Recommender Systems Challenge 2018 (RecSys Challenge '18)en_UK
dc.citation.isbn9781450365864en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.wtid1038819en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2018-08-13en_UK
dcterms.dateAccepted2018-08-13en_UK
dc.date.filedepositdate2018-10-24en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorVagliano, Iacopo|en_UK
local.rioxx.authorGalke, Lukas|en_UK
local.rioxx.authorMai, Florian|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2268-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameVagliano et al 2018.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450365864en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Vagliano et al 2018.pdfFulltext - Published Version659.08 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.