Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28054
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGroße-Bölting, Gregoren_UK
dc.contributor.authorNishioka, Chifumien_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-11-06T14:30:33Z-
dc.date.available2018-11-06T14:30:33Z-
dc.date.issued2015-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28054-
dc.description.abstractWe introduce a framework for automated semantic document annotation that is composed of four processes, namely concept extraction, concept activation, annotation selection, and evaluation. The framework is used to implement and compare different annotation strategies motivated by the literature. For concept extraction, we apply entity detection with semantic hierarchical knowledge bases, Tri-gram, RAKE, and LDA. For concept activation, we compare a set of statistical, hierarchy-based, and graph-based methods. For selecting annotations, we compare top-k as well as kNN. In total, we define 43 different strategies including novel combinations like using graph-based activation with kNN. We have evaluated the strategies using three different datasets of varying size from three scientific disciplines (economics, politics, and computer science) that contain 100, 000 manually labelled documents in total. We obtain the best results on all three datasets by our novel combination of entity detection with graph-based activation (e.g., HITS and Degree) and kNN. For the economic and political science datasets, the best F-measure is .39 and .28, respectively. For the computer science dataset, the maximum F-measure of .33 can be reached. The experiments are the by far largest on scholarly content annotation, which typically are up to a few hundred documents per dataset only.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationGroße-Bölting G, Nishioka C & Scherp A (2015) A comparison of different strategies for automated semantic document annotation. In: Proceedings of the 8th International Conference on Knowledge Capture (K-Cap 2015) 8th International Conference on Knowledge Capture (K-Cap '15), Palisades, NY, USA, 07.10.2015-10.10.2015. New York: ACM. https://doi.org/10.1145/2815833.2815838en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectDocument annotationen_UK
dc.subjecthierarchical knowledge basesen_UK
dc.titleA comparison of different strategies for automated semantic document annotationen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Grosse-Bolting-etal-CP.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/2815833.2815838en_UK
dc.citation.jtitleProceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the 8th International Conference on Knowledge Capture (K-Cap 2015)en_UK
dc.citation.conferencedates2015-10-07 - 2015-10-10en_UK
dc.citation.conferencelocationPalisades, NY, USAen_UK
dc.citation.conferencename8th International Conference on Knowledge Capture (K-Cap '15)en_UK
dc.citation.isbn9781450338493en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.identifier.scopusid2-s2.0-84997498742en_UK
dc.identifier.wtid1007279en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2015-07-15en_UK
dcterms.dateAccepted2015-07-15en_UK
dc.date.filedepositdate2018-10-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGroße-Bölting, Gregor|en_UK
local.rioxx.authorNishioka, Chifumi|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2265-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameGrosse-Bolting-etal-CP.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450338493en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Grosse-Bolting-etal-CP.pdfFulltext - Published Version280.94 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.