Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28049
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGroße-Bölting, Gregoren_UK
dc.contributor.authorNishioka, Chifumien_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-11-06T14:29:21Z-
dc.date.available2018-11-06T14:29:21Z-
dc.date.issued2015-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28049-
dc.description.abstractWe present the design and application of a generic approach for semantic extraction of professional interests from social media using a hierarchical knowledge-base and spreading activation theory. By this, we can assess to which extend a user's social media life reflects his or her professional life. Detecting named entities related to professional interests is conducted by a taxonomy of terms in a particular domain. It can be assumed that one can freely obtain such a taxonomy for many professional fields including computer science, social sciences, economics, agriculture, medicine, and so on. In our experiments, we consider the domain of computer science and extract professional interests from a user's Twitter stream. We compare different spreading activation functions and metrics to assess the performance of the obtained results against evaluation data obtained from the professional publications of the Twitter users. Besides selected existing activation functions from the literature, we also introduce a new spreading activation function that normalises the activation w.r.t. to the outdegree of the concepts.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationGroße-Bölting G, Nishioka C & Scherp A (2015) Generic process for extracting user profiles from social media using hierarchical knowledge bases. In: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing. 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), Anaheim, CA, USA, 07.02.2015-09.02.2015. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, pp. 197-200. https://doi.org/10.1109/ICOSC.2015.7050806en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectEconomicsen_UK
dc.subjectTwitteren_UK
dc.subjectinformation servicesen_UK
dc.subjectelectronic publishingen_UK
dc.subjectinterneten_UK
dc.subjectlabelingen_UK
dc.titleGeneric process for extracting user profiles from social media using hierarchical knowledge basesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[2015 9th IEEE.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/ICOSC.2015.7050806en_UK
dc.citation.jtitleProceedings of the 2015 IEEE 9th International Conference on Semantic Computing, IEEE ICSC 2015en_UK
dc.citation.spage197en_UK
dc.citation.epage200en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleProceedings of the 2015 IEEE 9th International Conference on Semantic Computingen_UK
dc.citation.conferencedates2015-02-07 - 2015-02-09en_UK
dc.citation.conferencelocationAnaheim, CA, USAen_UK
dc.citation.conferencename2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)en_UK
dc.citation.isbn9781479979356en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.identifier.scopusid2-s2.0-84925592054en_UK
dc.identifier.wtid1007305en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dcterms.dateAccepted2015-12-31en_UK
dc.date.filedepositdate2018-10-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGroße-Bölting, Gregor|en_UK
local.rioxx.authorNishioka, Chifumi|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2265-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename2015 9th IEEE.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781479979356en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
2015 9th IEEE.pdfFulltext - Published Version331.57 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.