Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNishioka, Chifumien_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.contributor.authorDellschaft, Klaasen_UK
dc.date.accessioned2018-10-24T14:35:18Z-
dc.date.available2018-10-24T14:35:18Z-
dc.date.issued2016-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28022-
dc.description.abstractOver the last years, many papers have been published about how to use machine learning for classifying postings on microblogging platforms like Twitter, e.g., in order to assist users to reach tweets that interest them. Typically, the automatic classification results are then evaluated against a gold standard classification which consists of either (i) the hashtags of the tweets' authors, or (ii) manual annotations of independent human annotators. In this paper, we show that there are fundamental differences between these two kinds of gold standard classifications, i.e., human annotators are more likely to classify tweets like other human annotators than like the tweets' authors. Furthermore, we discuss how these differences may influence the evaluation of automatic classifications, like they may be achieved by Latent Dirichlet Allocation (LDA). We argue that researchers who conduct machine learning experiments for tweet classification should pay particular attention to the kind of gold standard they use. One may even argue that hashtags are not appropriate as a gold standard for tweet classification.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationNishioka C, Scherp A & Dellschaft K (2016) Comparing tweet classifications by authors' hashtags, machine learning, and human annotators. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 1. 2015 International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 06.12.2015-09.12.2015. Singapore: Institute of Electrical and Electronics Engineers, pp. 67-74. https://doi.org/10.1109/WI-IAT.2015.69en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectSocial mediaen_UK
dc.subjectcomparative studyen_UK
dc.subjectshort text clarificationen_UK
dc.subjecthuman experimentationen_UK
dc.titleComparing tweet classifications by authors' hashtags, machine learning, and human annotatorsen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Nishioka et al 2015.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/WI-IAT.2015.69en_UK
dc.citation.jtitleProceedings - 2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015en_UK
dc.citation.volume1en_UK
dc.citation.spage67en_UK
dc.citation.epage74en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitle2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)en_UK
dc.citation.conferencedates2015-12-06 - 2015-12-09en_UK
dc.citation.conferencename2015 International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)en_UK
dc.citation.isbn9781467396172en_UK
dc.publisher.addressSingaporeen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationUniversity of Koblenz-Landauen_UK
dc.identifier.isiWOS:000393162800011en_UK
dc.identifier.scopusid2-s2.0-85028347174en_UK
dc.identifier.wtid1007233en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2015-07-15en_UK
dcterms.dateAccepted2015-07-15en_UK
dc.date.filedepositdate2018-10-18en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNishioka, Chifumi|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.authorDellschaft, Klaas|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2266-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameNishioka et al 2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781467396172en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Nishioka et al 2015.pdfFulltext - Published Version280.56 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.