University of Stirling    STORRE: Stirling Online Research Repository University Circle Images   Research Led, Student Focused  
 

STORRE >
School of Natural Sciences >
Aquaculture >
Aquaculture Journal Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2802

Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Influence of conjugated linoleic acid (CLA) or tetradecylthioacetic acid (TTA) on growth, lipid composition, fatty acid metabolism and lipid gene expression of rainbow trout (Oncorhynchus mykiss L.)
Author(s): Kennedy, Sean Robert
Bickerdike, Ralph
Berge, Rolf K
Dick, James R
Tocher, Douglas R
Contact Email: drt1@stir.ac.uk
Keywords: CLA
TTA
Lipid
Fatty acid
Composition
diet
flesh
rainbow trout
liver
Issue Date: Nov-2007
Publisher: Elsevier
Citation: Kennedy SR, Bickerdike R, Berge RK, Dick JR & Tocher DR (2007) Influence of conjugated linoleic acid (CLA) or tetradecylthioacetic acid (TTA) on growth, lipid composition, fatty acid metabolism and lipid gene expression of rainbow trout (Oncorhynchus mykiss L.), Aquaculture, 272 (41000), pp. 489-501.
Abstract: Our objective was to test the hypotheses that conjugated linoleic acid (CLA) and/or tetradecylthioacetic acid (TTA) would have beneficial effects on the nutritional quality of rainbow trout (Oncorhynchus mykiss) through decreased lipid content of flesh or viscera, and increased levels of beneficial fatty acids including accumulation of CLA or TTA themselves. The specific aims of this study were to determine the effects of CLA and TTA on growth performance, lipid and fatty acid metabolism, and selected gene expression in commercial sized trout grown in seawater. Trout were fed for eight weeks on fish meal and fish oil diets containing either 0.5% or 1% CLA, or 0.5% TTA. The effects of the supplemented fatty acids on growth, feed efficiency, lipid contents, class compositions and fatty acid compositions of flesh and liver were determined, along with liver highly unsaturated fatty acid synthesis, activities of key enzymes of fatty acid oxidation in liver and muscle, and expression of carnitine palmitoyltransferase-I (CPT-I) and fatty acyl desaturase and elongase genes. Neither functional fatty acid had any effect on growth parameters, condition factor, viscero- and hepato-somatic indices or fillet colour, and there were no mortalities in any of the treatments. Dietary CLA, but not TTA, decreased the lipid content of liver, but neither fatty acid had any significant effect on lipid class compositions of liver and flesh. Both CLA and TTA were incorporated into tissue lipids, with higher percentages found in flesh compared to liver. In addition, production of hexaene fatty acid by liver microsomes was increased by dietary CLA or TTA, and both functional fatty acids increased the proportion of n-3 fatty acids in liver mainly due to increased 20:5n-3 and 22:6n-3. However, the expression of fatty acyl Δ6 desaturase was significantly lower in fish fed CLA or TTA, whereas the expression of PUFA elongase was increased, significantly so in fish fed 1% CLA. CPT-I activity was increased by TTA in liver and red muscle, and acyl CoA oxidase activity was increased by TTA in liver and CLA at the higher dietary inclusion level in red muscle. There was a clear trend for CPT-I expression to be increased in fish fed 0.5% CLA or TTA in all tissues although this was only significant in white muscle. The results showed that both CLA and TTA had effects on lipid metabolism that partly support the hypotheses tested. Although CLA or TTA did not enhance growth parameters, feed conversion or potential yield, nutritional quality could be enhanced, and sea-run trout fed CLA or TTA could be beneficial in the human diet through provision of bioactive fatty acids, with no detrimental effects on 20:5n-3 or 22:6n-3 levels.
Type: Journal Article
URI: http://hdl.handle.net/1893/2802
URL: http://www.sciencedirect.com/science/journal/00448486
DOI Link: http://dx.doi.org/10.1016/j.aquaculture.2007.06.033
Rights: Published in Aquaculture by Elsevier. Aquaculture, Volume 272, Issues 1-4, November 2007, pp. 489 - 501; This is the peer reviewed version of this article.; NOTICE: this is the author’s version of a work that was accepted for publication in Aquaculture. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Aquaculture, VOL 272, ISSUE 1-4, November 2007. DOI 10.1016/j.aquaculture.2007.06.033
Affiliation: University of Stirling
BioMar Ltd
Haukeland University Hospital
Aquaculture
Aquaculture

Files in This Item:

File Description SizeFormat
Kennedy et al.pdf1.17 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.

 

Valid XHTML 1.0! Repository Service Operated by Information Services, University of Stirling
Powered by DSpace Software Copyright © 2002-2010  Duraspace - Feedback