Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28000
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalke, Lukasen_UK
dc.contributor.authorMai, Florianen_UK
dc.contributor.authorVagliano, Iacopoen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-10-19T00:00:42Z-
dc.date.available2018-10-19T00:00:42Z-
dc.date.issued2018-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/28000-
dc.description.abstractWe present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation. We analyze the effects of adversarial regularization, sparsity, and different input modalities. By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation. We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels. Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness. When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationGalke L, Mai F, Vagliano I & Scherp A (2018) Multi-modal adversarial autoencoders for recommendations of citations and subject labels. In: UMAP '18 Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. User Modeling, Adaptation and Personalization - UMAP 2018, Singapore, 08.07.2018-11.07.2018. New York: ACM, pp. 197-205. https://doi.org/10.1145/3209219.3209236en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectrecommender systemsen_UK
dc.subjectneural networksen_UK
dc.subjectadversarial autoencodersen_UK
dc.subjectmulti-modalen_UK
dc.subjectsparsityen_UK
dc.titleMulti-modal adversarial autoencoders for recommendations of citations and subject labelsen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[UMAP18-Galke et al.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/3209219.3209236en_UK
dc.citation.jtitleUMAP 2018 - Proceedings of the 26th Conference on User Modeling, Adaptation and Personalizationen_UK
dc.citation.spage197en_UK
dc.citation.epage205en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.contributor.funderGerman Research Foundationen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.btitleUMAP '18 Proceedings of the 26th Conference on User Modeling, Adaptation and Personalizationen_UK
dc.citation.conferencedates2018-07-08 - 2018-07-11en_UK
dc.citation.conferencelocationSingaporeen_UK
dc.citation.conferencenameUser Modeling, Adaptation and Personalization - UMAP 2018en_UK
dc.citation.isbn9781450355896en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.identifier.scopusid2-s2.0-85051724601en_UK
dc.identifier.wtid1007142en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2018-04-12en_UK
dcterms.dateAccepted2018-04-12en_UK
dc.date.filedepositdate2018-10-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGalke, Lukas|en_UK
local.rioxx.authorMai, Florian|en_UK
local.rioxx.authorVagliano, Iacopo|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|German Research Foundation|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2268-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameUMAP18-Galke et al.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781450355896en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
UMAP18-Galke et al.pdfFulltext - Published Version1.76 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.