Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBöschen, Falken_UK
dc.contributor.authorBeck, Tilmanen_UK
dc.contributor.authorScherp, Ansgaren_UK
dc.date.accessioned2018-10-17T00:03:11Z-
dc.date.available2018-10-17T00:03:11Z-
dc.date.issued2018-11-30en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27974-
dc.description.abstractDifferent approaches have been proposed in the past to address the challenge of extracting text from scholarly figures. However, until recently, no comparative evaluation of the different approaches had been conducted. Thus, we performed an extensive study of the related work and evaluated in total 32 different approaches. In this work, we perform a more detailed comparison of the 7 most relevant approaches described in the literature and extend to 37 systematic linear combinations of methods for extracting text from scholarly figures. Our generic pipeline, consisting of six steps, allows us to freely combine the different possible methods and perform a fair comparison. Overall, we have evaluated 44 different linear pipeline configurations and systematically compared the different methods. We then derived two non-linear configurations and a two-pass approach. We evaluate all pipeline configurations over four datasets of scholarly figures of different origin and characteristics. The quality of the extraction results is assessed using F-measure and Levenshtein distance, and we measure the runtime performance. Our experiments showed that there is a linear configuration that overall shows the best text extraction quality on all datasets. Further experiments showed that the best configuration can be improved by extending it to a two-pass approach. Regarding the runtime, we observed huge differences from very fast approaches to those running for several weeks. Our experiments found the best working configuration for text extraction from our method set. However, they also showed that further improvements regarding region extraction and classification are needed.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationBöschen F, Beck T & Scherp A (2018) Survey and empirical comparison of different approaches for text extraction from scholarly figures. Multimedia Tools and Applications, 77 (22), pp. 29475-29505. https://doi.org/10.1007/s11042-018-6162-7en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectScholarly figuresen_UK
dc.subjectText extractionen_UK
dc.subjectComparisonen_UK
dc.subjectFigure searchen_UK
dc.titleSurvey and empirical comparison of different approaches for text extraction from scholarly figuresen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Böschen2018_Article_SurveyAndEmpiricalComparisonOf.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s11042-018-6162-7en_UK
dc.citation.jtitleMultimedia Tools and Applicationsen_UK
dc.citation.issn1573-7721en_UK
dc.citation.issn1380-7501en_UK
dc.citation.volume77en_UK
dc.citation.issue22en_UK
dc.citation.spage29475en_UK
dc.citation.epage29505en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commissionen_UK
dc.author.emailansgar.scherp@stir.ac.uken_UK
dc.citation.date02/06/2018en_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationUniversity of Kielen_UK
dc.contributor.affiliationLeibniz Information Centre for Economics - ZBWen_UK
dc.identifier.isiWOS:000451780800016en_UK
dc.identifier.scopusid2-s2.0-85047962725en_UK
dc.identifier.wtid1007411en_UK
dc.contributor.orcid0000-0002-2653-9245en_UK
dc.date.accepted2018-05-16en_UK
dcterms.dateAccepted2018-05-16en_UK
dc.date.filedepositdate2018-10-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBöschen, Falk|en_UK
local.rioxx.authorBeck, Tilman|en_UK
local.rioxx.authorScherp, Ansgar|0000-0002-2653-9245en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2268-05-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameBöschen2018_Article_SurveyAndEmpiricalComparisonOf.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1380-7501en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Böschen2018_Article_SurveyAndEmpiricalComparisonOf.pdfFulltext - Published Version1.11 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.