Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRen, Pengen_UK
dc.contributor.authorSun, Wenjianen_UK
dc.contributor.authorLuo, Chunboen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2018-10-09T00:00:23Z-
dc.date.available2018-10-09T00:00:23Z-
dc.date.issued2018-02en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27931-
dc.description.abstractIn contrast to the human visual system (HVS) that applies different processing schemes to visual information of different textural categories, most existing deep learning models for image super-resolution tend to exploit an indiscriminate scheme for processing one whole image. Inspired by the human cognitive mechanism, we propose a multiple convolutional neural network framework trained based on different textural clusters of image local patches. To this end, we commence by grouping patches intoKclusters viaK-means, which enables each cluster center to encode image priors of a certain texture category. We then trainKconvolutional neural networks for super-resolution based on theKclusters of patches separately, such that the multiple convolutional neural networks comprehensively capture the patch textural variability. Furthermore, each convolutional neural network characterizes one specific texture category and is used for restoring patches belonging to the cluster. In this way, the texture variation within a whole image is characterized by assigning local patches to their closest cluster centers, and the super-resolution of each local patch is conducted via the convolutional neural network trained by its cluster. Our proposed framework not only exploits the deep learning capability of convolutional neural networks but also adapts them to depict texture diversities for super-resolution. Experimental super-resolution evaluations on benchmark image datasets validate that our framework achieves state-of-the-art performance in terms of peak signal-to-noise ratio and structural similarity. Our multiple convolutional neural network framework provides an enhanced image super-resolution strategy over existing single-mode deep learning models.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationRen P, Sun W, Luo C & Hussain A (2018) Clustering-Oriented Multiple Convolutional Neural Networks for Single Image Super-Resolution. Cognitive Computation, 10 (1), pp. 165-178. https://doi.org/10.1007/s12559-017-9512-2en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Cognitive Computation. The final authenticated version is available online at: https://doi.org/10.1007/s12559-017-9512-2.en_UK
dc.subjectClusteringen_UK
dc.subjectConvolutional neural networksen_UK
dc.subjectSingle image super-resolutionen_UK
dc.titleClustering-Oriented Multiple Convolutional Neural Networks for Single Image Super-Resolutionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s12559-017-9512-2en_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume10en_UK
dc.citation.issue1en_UK
dc.citation.spage165en_UK
dc.citation.epage178en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.date04/10/2017en_UK
dc.contributor.affiliationChina University of Petroleumen_UK
dc.contributor.affiliationChina University of Petroleumen_UK
dc.contributor.affiliationUniversity of Exeteren_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000426075500015en_UK
dc.identifier.scopusid2-s2.0-85030318306en_UK
dc.identifier.wtid515516en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2017-09-21en_UK
dcterms.dateAccepted2017-09-21en_UK
dc.date.filedepositdate2018-10-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorRen, Peng|en_UK
local.rioxx.authorSun, Wenjian|en_UK
local.rioxx.authorLuo, Chunbo|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-10-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-10-30|en_UK
local.rioxx.filenameClusteringCNN_Final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9956en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
ClusteringCNN_Final.pdfFulltext - Accepted Version3.57 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.