Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27772
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Faint and clustered components in exponential analysis
Author(s): Cuyt, Annie
Tsai, Min-nan
Verhoye, Marleen
Lee, Wen-shin
Contact Email: wen-shin.lee@stir.ac.uk
Keywords: Multi-exponential analysis, Padé approximation, Spectral analysis
Issue Date: 15-Jun-2018
Date Deposited: 10-Sep-2018
Citation: Cuyt A, Tsai M, Verhoye M & Lee W (2018) Faint and clustered components in exponential analysis. Applied Mathematics and Computation, 327, pp. 93-103. https://doi.org/10.1016/j.amc.2017.11.007
Abstract: An important hurdle in multi-exponential analysis is the correct detection of the number of components in a multi-exponential signal and their subsequent identification. This is especially difficult if one or more of these terms are faint and/or covered by noise. We present an approach to tackle this problem and illustrate its usefulness in motor current signature analysis (MCSA), relaxometry (in FLIM and MRI) and magnetic resonance spectroscopy (MRS). The approach is based on viewing the exponential analysis as a Padé approximation problem and makes use of some well-known theorems from Padé approximation theory. We show how to achieve a clear separation of signal and noise by computing sufficiently high order Padé approximants, thus modeling both the signal and the noise, rather than filtering out the noise at an earlier stage and return a low order approximant. We illustrate the usefulness of the approach in different practical situations, where some exponential components are difficult to detect and retrieve because they are either faint compared to the other signal elements or contained in a cluster of similar exponential components.
DOI Link: 10.1016/j.amc.2017.11.007
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
1-s2.0-S0096300317307804-main.pdfFulltext - Published Version1.26 MBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.