http://hdl.handle.net/1893/27768
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Nitrate/Nitrite Assimilation System of the Marine Picoplanktonic Cyanobacterium Synechococcus sp. Strain WH 8103: Effect of Nitrogen Source and Availability on Gene Expression |
Author(s): | Bird, Clare Wyman, Michael |
Contact Email: | clare.bird2@stir.ac.uk |
Issue Date: | 31-Dec-2003 |
Date Deposited: | 4-Sep-2018 |
Citation: | Bird C & Wyman M (2003) Nitrate/Nitrite Assimilation System of the Marine Picoplanktonic Cyanobacterium Synechococcus sp. Strain WH 8103: Effect of Nitrogen Source and Availability on Gene Expression. Applied and Environmental Microbiology, 69 (12), pp. 7009-7018. https://doi.org/10.1128/AEM.69.12.7009-7018.2003 |
Abstract: | The genes encoding the structural components of the nitrate/nitrite assimilation system of the oceanic cyanobacterium Synechococcus sp. strain WH 8103 were cloned and characterized. The genes encoding nitrate reductase (narB) and nitrite reductase (nirA) are clustered on the chromosome but are organized in separate transcriptional units. Upstream of narB is a homologue of nrtP that encodes a nitrate/nitrite-bispecific permease rather than the components of an ABC-type nitrate transporter found in freshwater cyanobacteria. Unusually, neither nirA nor ntcA (encoding a positive transcription factor of genes subject to nitrogen control) were found to be tightly regulated by ammonium. Furthermore, transcription of glnA (encoding glutamine synthetase) is up-regulated in ammonium-grown cells, highlighting significant differences in nitrogen control in this cyanobacterium. Nitrogen depletion led to the transient up-regulation of ntcA, nirA, nrtP, narB, and glnA in what appears to be an NtcA-dependent manner. The NtcA-like promoters found upstream of nirA, nrtP, and narB all differ in sequence from the canonical NtcA promoter established for other cyanobacteria, and in the case of nirA, the NtcA-like promoter was functional only in cells deprived of combined nitrogen. The ecological implications of these findings are discussed in the context of the oligotrophic nature of oceanic surface waters in which Synechococcus spp. thrive. |
DOI Link: | 10.1128/AEM.69.12.7009-7018.2003 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Bird et al 2003.pdf | Fulltext - Published Version | 698.77 kB | Adobe PDF | Under Permanent Embargo Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.