Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27713
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConnor, Richarden_UK
dc.contributor.authorMoss, Roberten_UK
dc.contributor.editorNavarro, Gonzaloen_UK
dc.contributor.editorPestov, Vladimiren_UK
dc.date.accessioned2018-09-05T13:55:46Z-
dc.date.available2018-09-05T13:55:46Z-
dc.date.issued2012-12-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27713-
dc.description.abstractWe investigate a distance metric, previously defined for the measurement of structured data, in the more general context of vector spaces. The metric has a basis in information theory and assesses the distance between two vectors in terms of their relative information content. The resulting metric gives an outcome based on the dimensional correlation, rather than magnitude, of the input vectors, in a manner similar to Cosine Distance. In this paper the metric is defined, and assessed, in comparison with Cosine Distance, for its major properties: semantics, properties for use within similarity search, and evaluation efficiency. We find that it is fairly well correlated with Cosine Distance in dense spaces, but its semantics are in some cases preferable. In a sparse space, it significantly outperforms Cosine Distance over TREC data and queries, the only large collection for which we have a human-ratified ground truth. This result is backed up by another experiment over movielens data. In dense Cartesian spaces it has better properties for use with similarity indices than either Cosine or Euclidean Distance. In its definitional form it is very expensive to evaluate for high-dimensional sparse vectors; to counter this, we show an algebraic rewrite which allows its evaluation to be performed more efficiently. Overall, when a multivariate correlation metric is required over positive vectors, SED seems to be a better choice than Cosine Distance in many circumstances.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationConnor R & Moss R (2012) A multivariate correlation distance for vector spaces. In: Navarro G & Pestov V (eds.) Similarity Search and Applications: 5th International Conference, SISAP 2012, Toronto, ON, Canada, August 9-10, 2012. Proceedings. Lecture Notes in Computer Science, 7404. Similarity Search and Applications: 5th International Conference, SISAP 2012, Toronto, 09.08.2012-10.08.2012. Berlin, Heidelberg: Springer Verlag, pp. 209-225. https://doi.org/10.1007/978-3-642-32153-5_15en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 7404en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectDistance metricen_UK
dc.subjectmultivariate correlationen_UK
dc.subjectvector spaceen_UK
dc.subjectcosine distanceen_UK
dc.subjectsimilarity searchen_UK
dc.titleA multivariate correlation distance for vector spacesen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Connor Moss 2012.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-642-32153-5_15en_UK
dc.citation.jtitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage209en_UK
dc.citation.epage225en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailrichard.connor@stir.ac.uken_UK
dc.citation.btitleSimilarity Search and Applications: 5th International Conference, SISAP 2012, Toronto, ON, Canada, August 9-10, 2012. Proceedingsen_UK
dc.citation.conferencedates2012-08-09 - 2012-08-10en_UK
dc.citation.conferencelocationTorontoen_UK
dc.citation.conferencenameSimilarity Search and Applications: 5th International Conference, SISAP 2012en_UK
dc.citation.isbn978-3-642-32152-8en_UK
dc.publisher.addressBerlin, Heidelbergen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.scopusid2-s2.0-84865484370en_UK
dc.identifier.wtid956103en_UK
dc.contributor.orcid0000-0003-4734-8103en_UK
dcterms.dateAccepted2012-12-31en_UK
dc.date.filedepositdate2018-08-16en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorConnor, Richard|0000-0003-4734-8103en_UK
local.rioxx.authorMoss, Robert|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorNavarro, Gonzalo|en_UK
local.rioxx.contributorPestov, Vladimir|en_UK
local.rioxx.freetoreaddate2262-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameConnor Moss 2012.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-642-32152-8en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Connor Moss 2012.pdfFulltext - Published Version873.04 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.