Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27684
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Yongliangen_UK
dc.contributor.authorCuyt, Annieen_UK
dc.contributor.authorLee, Wen-shinen_UK
dc.contributor.authorLo Bianco, Giovannien_UK
dc.contributor.authorWu, Gangen_UK
dc.contributor.authorChen, Yuen_UK
dc.contributor.authorLi, David Day-Ueien_UK
dc.date.accessioned2018-08-24T14:27:38Z-
dc.date.available2018-08-24T14:27:38Z-
dc.date.issued2016-11-14en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27684-
dc.description.abstractAnalyzing large fluorescence lifetime imaging (FLIM) data is becoming overwhelming; the latest FLIM systems easily produce massive amounts of data, making an efficient analysis more challenging than ever. In this paper we propose the combination of a custom-fit variable projection method, with a Laguerre expansion based deconvolution, to analyze bi-exponential data obtained from time-domain FLIM systems. Unlike nonlinear least squares methods, which require a suitable initial guess from an experienced researcher, the new method is free from manual interventions and hence can support automated analysis. Monte Carlo simulations are carried out on synthesized FLIM data to demonstrate the performance compared to other approaches. The performance is also illustrated on real-life FLIM data obtained from the study of autofluorescence of daisy pollen and the endocytosis of gold nanorods (GNRs) in living cells. In the latter, the fluorescence lifetimes of the GNRs are much shorter than the full width at half maximum of the instrument response function. Overall, our proposed method contains simple steps and shows great promise in realising automated FLIM analysis of large data sets.en_UK
dc.language.isoenen_UK
dc.publisherThe Optical Societyen_UK
dc.relationZhang Y, Cuyt A, Lee W, Lo Bianco G, Wu G, Chen Y & Li DD (2016) Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. Optics Express, 24 (23), pp. 26777-26791. https://doi.org/10.1364/oe.24.026777en_UK
dc.rightsPublished by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectPhoton countingen_UK
dc.subjectImage analysisen_UK
dc.subjectMicroscopyen_UK
dc.subjectDeconvolutionen_UK
dc.subjectLifetime-based sensingen_UK
dc.subjectTime-resolved imaging.en_UK
dc.titleTowards unsupervised fluorescence lifetime imaging using low dimensional variable projectionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1364/oe.24.026777en_UK
dc.citation.jtitleOptics Expressen_UK
dc.citation.issn1094-4087en_UK
dc.citation.volume24en_UK
dc.citation.issue23en_UK
dc.citation.spage26777en_UK
dc.citation.epage26791en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderRoyal Societyen_UK
dc.contributor.funderChina Scholarship Councilen_UK
dc.contributor.funderBiotechnology and Biological Sciences Research Councilen_UK
dc.citation.date10/11/2016en_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationMines-Nantesen_UK
dc.contributor.affiliationUniversity of Sussexen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.wtid980226en_UK
dc.contributor.orcid0000-0002-2808-3739en_UK
dc.date.accepted2016-10-19en_UK
dcterms.dateAccepted2016-10-19en_UK
dc.date.filedepositdate2018-08-23en_UK
dc.subject.tagMathematical Analysisen_UK
dc.subject.tagSignal Processingen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorZhang, Yongliang|en_UK
local.rioxx.authorCuyt, Annie|en_UK
local.rioxx.authorLee, Wen-shin|0000-0002-2808-3739en_UK
local.rioxx.authorLo Bianco, Giovanni|en_UK
local.rioxx.authorWu, Gang|en_UK
local.rioxx.authorChen, Yu|en_UK
local.rioxx.authorLi, David Day-Uei|en_UK
local.rioxx.project140915|Royal Society|http://dx.doi.org/10.13039/501100000288en_UK
local.rioxx.projectProject ID unknown|China Scholarship Council|en_UK
local.rioxx.projectBB/K013416/1|Biotechnology and Biological Sciences Research Council|http://dx.doi.org/10.13039/501100000268en_UK
local.rioxx.freetoreaddate2018-08-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2018-08-24|en_UK
local.rioxx.filenameoe-24-23-26777.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1094-4087en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
oe-24-23-26777.pdfFulltext - Published Version8.69 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.