Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27631
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings
Author(s): Connor, Richard
Vadicamo, Lucia
Rabitti, Fausto
Title: High-dimensional simplexes for supermetric search
Editor(s): Beecks, C
Borutta, F
Kröger, P
Seidl, T
Citation: Connor R, Vadicamo L & Rabitti F (2017) High-dimensional simplexes for supermetric search. In: Beecks C, Borutta F, Kröger P & Seidl T (eds.) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science, 10609. Similarity Search and Applications 10th International Conference, SISAP 2017, Munich, 04.10.2017-06.10.2017. Cham, Switzerland: Springer, pp. 96-109. https://doi.org/10.1007/978-3-319-68474-1_7
Issue Date: 31-Dec-2017
Date Deposited: 16-Aug-2018
Series/Report no.: Lecture Notes in Computer Science, 10609
Conference Name: Similarity Search and Applications 10th International Conference, SISAP 2017
Conference Dates: 2017-10-04 - 2017-10-06
Conference Location: Munich
Abstract: In a metric space, triangle inequality implies that, for any three objects, a triangle with edge lengths corresponding to their pairwise distances can be formed. The n-point property is a generalisation of this where, for any (n+1) objects in the space, there exists an n-dimensional simplex whose edge lengths correspond to the distances among the objects. In general, metric spaces do not have this property; however in 1953, Blumenthal showed that any semi-metric space which is isometrically embeddable in a Hilbert space also has the n-point property. We have previously called such spaces supermetric spaces, and have shown that many metric spaces are also supermetric, including Euclidean, Cosine, Jensen-Shannon and Triangular spaces of any dimension. Here we show how such simplexes can be constructed from only their edge lengths, and we show how the geometry of the simplexes can be used to determine lower and upper bounds on unknown distances within the original space. By increasing the number of dimensions, these bounds converge to the true distance. Finally we show that for any Hilbert-embeddable space, it is possible to construct Euclidean spaces of arbitrary dimensions, from which these lower and upper bounds of the original space can be determined. These spaces may be much cheaper to query than the original. For similarity search, the engineering tradeoffs are good: we show significant reductions in data size and metric cost with little loss of accuracy, leading to a significant overall improvement in exact search performance.
Status: AM - Accepted Manuscript
Rights: This is a post-peer-review, pre-copyedit version of an article published in Beecks D, Borutta F, Kröger P, Seidl T (eds) Similarity Search and Applications. SISAP 2017. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-68474-1_7

Files in This Item:
File Description SizeFormat 
Connor_etal_SISAP2017_High_dimensional_simplexes_for_metric_search.pdfFulltext - Accepted Version397.52 kBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.