Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/27604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Feien_UK
dc.contributor.authorHuang, Tengen_UK
dc.contributor.authorSun, Jinpingen_UK
dc.contributor.authorWang, Junen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorYang, Erfuen_UK
dc.date.accessioned2018-08-04T00:01:41Z-
dc.date.available2018-08-04T00:01:41Z-
dc.date.issued2019-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/27604-
dc.description.abstractTo effectively make use of the automatic feature extraction ability of biologically inspired deep learning technology, and enhance the ability of depth learning method to learn features, this paper proposed a deep learning algorithm combining deep convolutional neural network (DCNN) trained with an improved cost function and support vector machine (SVM). The class separation information, which explicitly facilitates intra-class compactness and inter-class separability in the process of learning features, is added to an improved cost function as a regularization term to enhance the feature extraction ability of DCNN. Then, the improved DCNN is applied to learn the features of SAR images. Finally, SVM is utilized to map the features into output labels. Experiments are performed on SAR image data in moving and stationary target acquisition and recognition (MSTAR) database. The experiment results prove the effectiveness of our method, achieving an average accuracy of 99% on ten types of targets, some variants, and some articulated targets. It proves that our method is effective and CNN enjoys a certain potential to be applied in SAR image target recognition.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationGao F, Huang T, Sun J, Wang J, Hussain A & Yang E (2019) A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network. Cognitive Computation, 11 (6), pp. 809-824. https://doi.org/10.1007/s12559-018-9563-zen_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.titleA New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Networken_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Gao2018_Article_ANewAlgorithmOfSARImageTargetR.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s12559-018-9563-zen_UK
dc.citation.jtitleCognitive Computationen_UK
dc.citation.issn1866-9964en_UK
dc.citation.issn1866-9956en_UK
dc.citation.volume11en_UK
dc.citation.issue6en_UK
dc.citation.spage809en_UK
dc.citation.epage824en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailamir.hussain@stir.ac.uken_UK
dc.citation.date26/06/2018en_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationBeihang Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:000511370800006en_UK
dc.identifier.scopusid2-s2.0-85049108400en_UK
dc.identifier.wtid965507en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.date.accepted2018-05-22en_UK
dcterms.dateAccepted2018-05-22en_UK
dc.date.filedepositdate2018-08-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGao, Fei|en_UK
local.rioxx.authorHuang, Teng|en_UK
local.rioxx.authorSun, Jinping|en_UK
local.rioxx.authorWang, Jun|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorYang, Erfu|en_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2268-05-27en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameGao2018_Article_ANewAlgorithmOfSARImageTargetR.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1866-9964en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Gao2018_Article_ANewAlgorithmOfSARImageTargetR.pdfFulltext - Published Version3.25 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.