Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/27604
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, Fei | en_UK |
dc.contributor.author | Huang, Teng | en_UK |
dc.contributor.author | Sun, Jinping | en_UK |
dc.contributor.author | Wang, Jun | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.author | Yang, Erfu | en_UK |
dc.date.accessioned | 2018-08-04T00:01:41Z | - |
dc.date.available | 2018-08-04T00:01:41Z | - |
dc.date.issued | 2019-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/27604 | - |
dc.description.abstract | To effectively make use of the automatic feature extraction ability of biologically inspired deep learning technology, and enhance the ability of depth learning method to learn features, this paper proposed a deep learning algorithm combining deep convolutional neural network (DCNN) trained with an improved cost function and support vector machine (SVM). The class separation information, which explicitly facilitates intra-class compactness and inter-class separability in the process of learning features, is added to an improved cost function as a regularization term to enhance the feature extraction ability of DCNN. Then, the improved DCNN is applied to learn the features of SAR images. Finally, SVM is utilized to map the features into output labels. Experiments are performed on SAR image data in moving and stationary target acquisition and recognition (MSTAR) database. The experiment results prove the effectiveness of our method, achieving an average accuracy of 99% on ten types of targets, some variants, and some articulated targets. It proves that our method is effective and CNN enjoys a certain potential to be applied in SAR image target recognition. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | BMC | en_UK |
dc.relation | Gao F, Huang T, Sun J, Wang J, Hussain A & Yang E (2019) A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network. Cognitive Computation, 11 (6), pp. 809-824. https://doi.org/10.1007/s12559-018-9563-z | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.title | A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [Gao2018_Article_ANewAlgorithmOfSARImageTargetR.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/s12559-018-9563-z | en_UK |
dc.citation.jtitle | Cognitive Computation | en_UK |
dc.citation.issn | 1866-9964 | en_UK |
dc.citation.issn | 1866-9956 | en_UK |
dc.citation.volume | 11 | en_UK |
dc.citation.issue | 6 | en_UK |
dc.citation.spage | 809 | en_UK |
dc.citation.epage | 824 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | amir.hussain@stir.ac.uk | en_UK |
dc.citation.date | 26/06/2018 | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Beihang University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Strathclyde | en_UK |
dc.identifier.isi | WOS:000511370800006 | en_UK |
dc.identifier.scopusid | 2-s2.0-85049108400 | en_UK |
dc.identifier.wtid | 965507 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.date.accepted | 2018-05-22 | en_UK |
dcterms.dateAccepted | 2018-05-22 | en_UK |
dc.date.filedepositdate | 2018-08-03 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Gao, Fei| | en_UK |
local.rioxx.author | Huang, Teng| | en_UK |
local.rioxx.author | Sun, Jinping| | en_UK |
local.rioxx.author | Wang, Jun| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.author | Yang, Erfu| | en_UK |
local.rioxx.project | Project ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2268-05-27 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Gao2018_Article_ANewAlgorithmOfSARImageTargetR.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1866-9964 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gao2018_Article_ANewAlgorithmOfSARImageTargetR.pdf | Fulltext - Published Version | 3.25 MB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.